[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[tlaplus] "java.lang.NullPointerException" in cloud based distributed mode



Hello,

Iam trying to learn how to run a spec in cloud based distributed mode.
So I config TLC to inter-operate with Azure according to the user Help.
 no matter how simple the spec I tried to run is, the result is always  "java.lang.NullPointerException" , and there is no problem in stand alone mode.
 

The Tool Box version is 1.7.1 and JRE version is 8
 
Below is my test spec and debug info  . 

" SLF4J:  Class Path contains multiple SLF4J  bindings.
   SLF4J:  Found bindings in [bundleresource://263.fwk2044294545:1/org/slf4j/impl/StaticLoggerBinder.class]

   SLF4J:  Found bindings in [bundleresource://263.fwk2044294545:2/org/slf4j/impl/StaticLoggerBinder.class]

   SLF4J:  see http://www.slf4j.org/codes.html#miltiple_bindings for an explanation.

   SLF4J:  Actual binding is of type [org.slf4j.helpers.NOPLoggerFactory] 
 "


    Can some body give me some advices?

 Thanks in advance


---------------------- MODULE MissionariesAndCannibals ----------------------
(***************************************************************************)
(* This module specifies a system that models the one described in the     *)
(* missionaries and cannibals problem.  On 20 December 2018, Wikipedia     *)
(* contained the following description of this problem.                    *)
(*                                                                         *)
(*    [T]hree missionaries and three cannibals must cross a river using    *)
(*    a boat which can carry at most two people, under the constraint      *)
(*    that, for both banks, if there are missionaries present on the       *)
(*    bank, they cannot be outnumbered by cannibals (if they were, the     *)
(*    cannibals would eat the missionaries).  The boat cannot cross the    *)
(*    river by itself with no people on board.                             *)
(*                                                                         *)
(* As explained below, we can use the specification and the TLC model      *)
(* checker to find a solution to the problem.                              *)
(***************************************************************************)

(***************************************************************************)
(* The following EXTENDS statement imports definitions of the ordinary     *)
(* arithmetic operations on integers and the definition of the Cardinality *)
(* operator, where Cardinality(S) is the number of elements in S if S is a *)
(* finite set.                                                             *)
(***************************************************************************)
EXTENDS Integers, FiniteSets

(***************************************************************************)
(* Next comes the declaration of the sets of missionaries and cannibals.   *)
(***************************************************************************)
CONSTANTS Missionaries, Cannibals 

(***************************************************************************)
(* In TLA+, an execution of a system is described as a sequence of states, *)
(* where a state is an assignment of values to variables.  A pair of       *)
(* successive states in an execution is called a step.  We write s -> t to *)
(* indicate that s, t is a step in an execution.                           *)
(*                                                                         *)
(* The first thing to do when writing a spec of a system is to decide what *)
(* should constitute a step.  There are a number of ways to describe the   *)
(* cannibals and missionaries that differ in what constitutes a step.  For *)
(* example, we could consider a single person getting into or out of the   *)
(* boat to be a step.  Breaking the execution into many small steps gives  *)
(* a more accurate description of the physical system, but using fewer big *)
(* steps provides a simpler spec.  We write a spec for a purpose, and we   *)
(* want to use the fewest steps that gives a sufficiently accurate         *)
(* description for that purpose.  Our purpose is to find a solution to the *)
(* cannibals and missionaries problem.  A little thought shows that this   *)
(* can be done by a specification in which a step consists of moving a set *)
(* of people with the boat from one bank to the other.                     *)
(*                                                                         *)
(* Having decided what a step is, we can see that a state of the system    *)
(* must describe on which bank the boat is and what people are on each     *)
(* bank.  What I find to be a simple and natural way to describe that      *)
(* state is with the following two variables:                              *)
(*                                                                         *)
(*    bank_of_boat: In any system execution, bank_of_boat will equal       *)
(*                  the bank of the river on which the boat is docked.     *)
(*                                                                         *)
(*    who_is_on_bank: In any execution of the system, the value of         *)
(*                    who_is_on_bank[b] will be the set of people          *)
(*                    on bank b.                                           *)
(*                                                                         *)
(* Although we could declare a constant Banks to be the set of riverbanks, *)
(* it's more convenient to simply give them names.  Let's call them "E"    *)
(* (for east bank) and "W" (for west bank), so {"E","W"} is the set of     *)
(* riverbanks.                                                             *)
(***************************************************************************)
VARIABLES bank_of_boat, who_is_on_bank 

(***************************************************************************)
(* Although not needed to specify the system, it's a good idea to tell the *)
(* reader of the spec the types of values that the variables will have in  *)
(* any reachable state of the system.  This is conventionally done by      *)
(* defining a state predicate called TypeOK.                               *)
(*                                                                         *)
(* The value of bank_of_boat will be either "E" or "W" -- that is, an      *)
(* element of the set {"E","W"}.  (The operator \in means "is an element   *)
(* of", and is written by mathematicians as a Greek epsilon.)              *)
(*                                                                         *)
(* The value of who_is_on_bank will be what programmers would call an      *)
(* array indexed by the set {"E","W"}, and what mathematicians would call  *)
(* a function with domain {"E","W"}.  (Many common primitive programming   *)
(* languages permit only arrays with index-set/domain the set              *)
(* {0, ...  , n} for some integer n.) For each b in {"E","W"}, the value   *)
(* of who_is_on_bank[b] will be a set of cannibals and/or missionaries --  *)
(* that is, an element of the set Cannibals \cup Missionaries, where \cup  *)
(* is the set union operator.  The _expression_ SUBSET S is the set of all   *)
(* subsets of the set S, and [D -> T] is the set of all arrays/functions   *)
(* with index-set/domain D such that f[d] is an element of T for all d     *)
(* in D.                                                                   *)
(*                                                                         *)
(* TLA+ allows you to write a conjunction of formulas as a list of those   *)
(* formulas bulleted by /\.  A disjunction of formulas is similarly        *)
(* written with a list bulleted by \/.                                     *)
(***************************************************************************)
TypeOK == /\ bank_of_boat \in {"E","W"}
          /\ who_is_on_bank \in 
                [{"E","W"} -> SUBSET (Cannibals \cup Missionaries)]

(***************************************************************************)
(* The possible executions of the system are specified by two formulas: an *)
(* initial-state formula usually named Init, and a next-state formula      *)
(* usually named Next.  The intial-state formula is the condition that     *)
(* must be true of the initial state of an execution.  The next-state      *)
(* formula is the condition that must be true for all possible steps in an *)
(* execution.                                                              *)
(*                                                                         *)
(* The initial-state formula Init asserts that the boat and all the        *)
(* cannibals and missionaries are on the east bank.  The formula           *)
(*                                                                         *)
(*    [x \in D |-> exp(x)]                                                 *)
(*                                                                         *)
(* represents the array/function F with index-set/domain D such that F[x]  *)
(* equals exp(x) for all x in D.                                           *)
(***************************************************************************)                             
Init == /\ bank_of_boat = "E"
        /\ who_is_on_bank = [i \in {"E","W"} |-> 
                               IF i = "E" THEN Cannibals \cup Missionaries
                                          ELSE  {} ]
              
(***************************************************************************)
(* We now define some operators that will be used to define the next-state *)
(* formula Next.                                                           *)
(*                                                                         *)
(* We first define IsSafe(S) to be the condition for it to be safe for S   *)
(* to be the set of people on a bank of the river.  It is true iff there   *)
(* are either no missionaries in S or the cannibals in do not outnumber    *)
(* the missionaries in S.  The operator \subseteq is the subset relation,  *)
(* and \cap is the set intersection operator.                              *)
(***************************************************************************)
IsSafe(S) == \/ S \subseteq Cannibals
             \/ Cardinality(S \cap Cannibals) =< Cardinality(S \cap Missionaries)

(***************************************************************************)
(* We define OtherBank so that OtherBank("E") equals "W" and               *)
(* OtherBank("W") equals "E".                                              *)
(***************************************************************************)
OtherBank(b) == IF b = "E" THEN "W" ELSE "E"

(***************************************************************************)
(* We now define the formula Move(S,b) to describe a step s -> t that      *)
(* represents a safe move of a set S of people from riverbank b to         *)
(* riverbank OtherBank(b) -- that is, a step where state t is one in which *)
(* the set of people on each bank is safe.  Formula Move(S) contains       *)
(* primed and unprimed variables, where an unprimed variable v equals the  *)
(* value of v in state s and a primed variable v' equals the variable's    *)
(* value in state t.  The possible step s -> t describes a safe move of    *)
(* the people in S from b to OtherBank(b) if and only if Move(S,b) equals  *)
(* true for that step.                                                     *)
(*                                                                         *)
(* The definition uses the TLA+ LET/IN construct for introducing           *)
(* definitions local to an _expression_, where LET defs IN exp is the        *)
(* _expression_ exp in which each identifier defined in defs has its         *)
(* indicated meaning.  In this definition, newThisBank and newOtherBank    *)
(* are defined locally to equal the sets of people on bank b and on bank   *)
(* OtherBank(b) after the set S of people take the boat from b to          *)
(* OtherBank(b).  The operator \ is set difference, where T \ S is the set *)
(* of all elements in T not in S.                                          *)
(*                                                                         *)
(* Observe that the first two conjuncts in the IN _expression_ contain no    *)
(* prime variables.  They are enabling conditions -- conditions on state s *)
(* that allow the step.  The second two conjuncts specify the new values   *)
(* of the two variables (their values in state t) in terms of their old    *)
(* values (their values in state s).                                       *)
(***************************************************************************)
Move(S,b) == /\ Cardinality(S) \in {1,2}
             /\ LET newThisBank  == who_is_on_bank[b] \ S
                    newOtherBank == who_is_on_bank[OtherBank(b)] \cup S
                IN  /\ IsSafe(newThisBank) 
                    /\ IsSafe(newOtherBank)
                    /\ bank_of_boat' = OtherBank(b)
                    /\ who_is_on_bank' = 
                         [i \in {"E","W"} |-> IF i = b THEN newThisBank 
                                                       ELSE newOtherBank]    

(***************************************************************************)
(* The next-state formula Next describes all steps s -> t that represent a *)
(* safe move of a set S of people across the river starting from           *)
(* bank_of_boat.  It asserts that there exists some subset S of the set of *)
(* people on the bank where the boat is for which step s -> t describes a  *)
(* safe movement of the people in S to the other bank.  This assertion is  *)
(* expressed mathematically with the existential quantification operator   *)
(* \E (written by mathematicians as an upside down E), where               *)
(*                                                                         *)
(*    \E x \in T : A(x)                                                    *)
(*                                                                         *)
(* asserts that A(x) is true for at least one value x in the set T.        *)
(***************************************************************************)
Next == \E S \in SUBSET who_is_on_bank[bank_of_boat] : 
            Move(S, bank_of_boat)

(***************************************************************************)
(* The usual reason for writing a spec is to check the system you're       *)
(* specifying for errors.  This means checking that all possible           *)
(* executions satisfy some property.  The most commonly checked property   *)
(* is invariance, asserting that some condition is satisfied by every      *)
(* state in in every possible execution.                                   *)
(*                                                                         *)
(* The purpose of this spec is to solve the cannibals and missionaries     *)
(* problem, which means finding some possible execution in which everyone  *)
(* reaches bank "W".  We can find that solution by having the TLC model    *)
(* checker check the invariance property that, in every reachable state,   *)
(* there is someone left on bank "E".  When TLC find that an invariant     *)
(* it's checking isn't an invariant, it outputs an execution that reaches  *)
(* a state in which the invariant isn't true--which in this case means an  *)
(* execution that solves the problem (one ending in a state with no one on *)
(* bank "E").  So to find the solution, you just have to run TLC on a      *)
(* model of this specification in which three-element sets are substituted *)
(* for the constants Missionaries and Cannibals, instructing TLC to check  *)
(* that the formula                                                        *)
(*                                                                         *)
(*    who_is_on_bank["E"] /= {}                                            *)
(*                                                                         *)
(* is an invariant.  The error trace TLC produces is a solution to the     *)
(* problem.  You can run TLC from the TLA+ Toolbox.  Go to the TLA+ web    *)
(* page to find out how to learn to do that.                               *)
(*                                                                         *)
(* This problem was proposed to me by Jay Misra, who then suggested        *)
(* improvements to my first version of the spec.                           *)
(***************************************************************************)                  
=============================================================================
\* Modification History
\* Last modified Sat Dec 22 14:17:18 PST 2018 by lamport
\* Created Thu Dec 20 11:44:08 PST 2018 by lamport


--
You received this message because you are subscribed to the Google Groups "tlaplus" group.
To unsubscribe from this group and stop receiving emails from it, send an email to tlaplus+unsubscribe@xxxxxxxxxxxxxxxx.
To view this discussion on the web visit https://groups.google.com/d/msgid/tlaplus/91ba9abe-7a43-4f8a-a58f-fab1d3f93d4fn%40googlegroups.com.