
module ConsistentKV
This spec is an abstraction of our cache consistency protocol; the interface, along with some

additional documentation, can be found in the caching/consistentkv package.

The intent of this protocol is to maintain strong consistency between the underlying database
and the cache.

The key idea is the use of a sentinel value, called Pending, that prevents cache entries from
being populated while a writer is committing to the underlying database.

extends Naturals

constants
The server can be in the following three states:

* Active servers may be used for all operations

* SentinelOnly servers should only be used for operations involving Sentinel values (e.g.

setting or clearing a Pending sentinel)

* Down servers may not be used for any operations

Active, SentinelOnly , Down,

We define the following kinds of processes:

* Readers attempt to read from the cache and then populate cache misses

* Writers use a two-step protocol to safely invalidate cache entries whenever updating the

underlying database

* Operators change the state of the server along the following “paths”:

* Active → SentinelOnly → Down

* Down → SentinelOnly → Up

Readers, Writers, Operators,

The set of possible keys and values for entries in the cache and database.

Keys, Values,

Sentinel values for entries in the cache that should be treated specially.

* Deleted and Missing entries are treated as cache misses

* Pending entries are treated as cache misses, and also prevent the entry from being populated

Missing means that a key does not appear in the cache, while Deleted means that a key
is associated with a special “DELETED” value. Because the cache makes extensive use of
versions and CAS operations, the most important difference between Missing and Deleted
is that Missing entries always have version 0, while Deleted entries can have any nonzero
version.

Deleted , Missing , Pending

--algorithm ConsistentKV {
variables

The cache is initially unpopulated.

cache keys to values = [k ∈ Keys 7→ Missing ],

1



Missing cache entries have version 0; versions generally increase monotonically, though
expiration and server restarts reset may reset entry versions back to 0 (and entry values

back to Missing).

cache keys to versions = [k ∈ Keys 7→ 0] ;

The DB initially maps each key to an arbitrary value.

db keys to values = [k ∈ Keys 7→ choose v ∈ Values : true],

Each Reader and Writer has its own view of the memcache server’s current state, and has

behavior that depends on this view.

This version of the spec models the behavior of the protocol in the case where the server
starts in a Down state before transitioning through SentinelOnly and Active.

observed server state = [p ∈ Readers ∪Writers 7→ Down] ;

Readers proceed as follows:

* init reader initializes the set of keys to be read

* get from cache reads existing values and versions from an Active server

* read from db reads cache misses that should be populated (of course the actual code also
reads cache misses that don’t need to be populated, but the result of those reads are not
relevant to this spec so do we not include them)

* add to cache uses a CAS operation to populate cache misses that haven’t changed since

the previous call to get from cache

process ( R ∈ Readers )
variables

data version ids,
db read keys to values,
keys to populate,
keys to read ,

{
init reader :

Sets keys to read to an arbitrary non-empty subset of Keys.

with ( keys ∈ (subset Keys) \ {{}} ) {
keys to read := keys ;

} ;

get from cache uses GetMulti (i .e. it only reads from Active servers).

get from cache :
if ( observed server state[self ] = Active ) {

keys to populate :=
{k ∈ keys to read :
∨ cache keys to values[k ] = Missing
∨ cache keys to values[k ] = Deleted} ;

data version ids :=
[k ∈ keys to populate 7→ cache keys to versions[k ]] ;

} else {
keys to populate := {} ;

2



data version ids := 〈〉 ;
} ;

read from db :
db read keys to values :=

[k ∈ keys to populate 7→ db keys to values[k ]] ;

add to cache uses CasMulti (i .e. it only writes to ACTIVE servers).

add to cache :
if ( observed server state[self ] = Active ) {

cache keys to values :=
[k ∈ Keys 7→

if ∧ k ∈ keys to populate
∧ data version ids[k ] = cache keys to versions[k ]
then db read keys to values[k ]
else cache keys to values[k ]] ;

cache keys to versions :=
[k ∈ Keys 7→

if ∧ k ∈ keys to populate
∧ data version ids[k ] = cache keys to versions[k ]
then cache keys to versions[k ] + 1
else cache keys to versions[k ]] ;

} ;

}

Writers proceed as follows:

* init writer initializes the set of keys → value mappings to be written; we assume that a
database transaction has already been started, and that all operations for that transaction,
except the final commit, occurred before init writer

* start pending uses the Pending sentinel value to prevent cache entries from being populated
(with possibly stale values); upon failure or detection of existing Pending values, the entire

write process (in particular, the database transaction) must be aborted

* db commit (obviously) commits the underlying database transaction and makes the written

values available to readers

* finish pending clears out any Pending sentinels that were set, so that subsequent reads

may populate the cache again

process ( W ∈ Writers )
variables

cas error keys,
cas success keys,
cas success keys to versions,
current cache keys to values,
current cache keys to versions,
db write keys,
db write keys to values,
pending items,

3



{
init writer :

Sets db write keys to an arbitrary non-empty subset of Keys.

with ( keys ∈ (subset Keys) \ {{}} ) {
db write keys := keys ;

} ;
Sets db write keys to values to an arbitrary mapping from keys to write to Values.

with ( keys to values ∈ [db write keys → Values] ) {
db write keys to values := keys to values ;

} ;

start pending uses GetSentinels and CasSentinels (i .e. it reads / writes from both Active

and SentinelOnly servers).

start pending :
skip ;

get sentinels :
if (
∨ observed server state[self ] = Active
∨ observed server state[self ] = SentinelOnly ) {
current cache keys to values :=

[k ∈ db write keys 7→ cache keys to values[k ]] ;
current cache keys to versions :=

[k ∈ db write keys 7→ cache keys to versions[k ]] ;
} else {

current cache keys to values := 〈〉 ;
current cache keys to versions := 〈〉 ;

} ;

check already pending :
if ( ∃ k ∈ domain current cache keys to values :

current cache keys to values[k ] = Pending ) {
goto Done ;

} ;

cas sentinels :
if (
∨ observed server state[self ] = Active
∨ observed server state[self ] = SentinelOnly ) {
cas success keys :=
{k ∈ domain current cache keys to versions :

current cache keys to versions[k ] = cache keys to versions[k ]} ;
cas error keys :=
{k ∈ domain current cache keys to versions :
¬k ∈ cas success keys} ;

cache keys to values :=

4



[k ∈ Keys 7→
if k ∈ cas success keys

then Pending
else cache keys to values[k ]] ;

cache keys to versions :=
[k ∈ Keys 7→

if k ∈ cas success keys
then cache keys to versions[k ] + 1
else cache keys to versions[k ]] ;

cas success keys to versions :=
[k ∈ cas success keys 7→ cache keys to versions[k ]] ;

} else {
cas success keys := {} ;
cas error keys := {} ;

} ;

check cas errors :
if ( cas error keys 6= {} ) {

goto finish pending ;
} ;

db commit :
db keys to values :=

[k ∈ Keys 7→
if k ∈ db write keys

then db write keys to values[k ]
else db keys to values[k ]] ;

finish pending uses SetSentinels (i .e. it writes to both Active and SentinelOnly servers).

finish pending :
if (
∨ observed server state[self ] = Active
∨ observed server state[self ] = SentinelOnly ) {
cache keys to values :=

[k ∈ Keys 7→
if ∧ k ∈ cas success keys
∧ cas success keys to versions[k ] = cache keys to versions[k ]
then Deleted
else cache keys to values[k ]] ;

cache keys to versions :=
[k ∈ Keys 7→

if ∧ k ∈ cas success keys
∧ cas success keys to versions[k ] = cache keys to versions[k ]
then cache keys to versions[k ] + 1
else cache keys to versions[k ]] ;

} ;

5



}

Operators proceed as follows:

* to sentinel only changes each client’s view of the server from Down to SentinelOnly, one
client at a time

* to active changes each client’s view of the server from SentinelOnly to Active, one client

at a time

Note that in this spec, we require that clients′ views of the server are never more than one
“step” apart.

process ( O ∈ Operators )
variable clients ;

{
init clients 1:

clients := Readers ∪Writers ;

to sentinel only :
while ( clients 6= {} ) {

one client to sentinel only :
with ( client ∈ clients ) {

observed server state[client ] := SentinelOnly ;
clients := clients \ {client} ;

} ;
} ;

init clients 2:
clients := Readers ∪Writers ;

to active :
while ( clients 6= {} ) {

one client to active :
with ( client ∈ clients ) {

observed server state[client ] := Active ;
clients := clients \ {client} ;

} ;
} ;

}
}

Consistency ensures that for all keys, the associated value in the cache is either equal to the

associated value in the database, or is one of the sentinel values.

Consistency
∆
=

∀ k ∈ Keys :
∨ cache keys to values[k ] = db keys to values[k ]
∨ cache keys to values[k ] = Deleted
∨ cache keys to values[k ] = Missing
∨ cache keys to values[k ] = Pending

6



TypeOK provides the following sanity checks:

* db keys to values is a mapping from the set of Keys to the set of Values

* cache keys to values is a mapping from the set of Keys to the set of Values, together with

some additional sentinel values

* cache keys to versions is a mapping from Keys to natural numbers

TypeOK
∆
=

∧ db keys to values ∈ [Keys → Values]
∧ cache keys to values ∈ [Keys → (Values ∪ {Deleted , Missing , Pending})]
∧ cache keys to versions ∈ [Keys → Nat ]

VersionsOK ensures that a key has version 0 if and only if it does not appear in the cache (i .e.

its value is Missing)

VersionsOK
∆
=

∀ k ∈ Keys :
cache keys to values[k ] = Missing ≡ cache keys to versions[k ] = 0

\ * Modification History

\ * Last modified Mon Aug 01 09:12:30 PDT 2016 by elliott

\ * Created Thu Jul 28 11:36:26 PDT 2016 by elliott

7


