Openinapp 7

Medium Q seo o@

Member-only story

Implementing Two Factor Authentication
Using Formal Methods

9 minread - 1dayago

w Irwansyah

@ Listen ﬂ Share e More

Well, every one knows Two Factor Authentication (TFA). Most probably already

implemented it in their own system. So what are the differences with this method?

It lies on using formal methods to implement the spec. Most will go from informal
specification which is some kind of PRD and then go straight to UML or codes. Any
unclear specification usually addressed ad hoc to the spec writer (the Product
Manager) or in a formal forum like a SCRUM grooming session or sprint planning
session. The result of the sprint will depends on the developer team (engineer and
QA) understanding of the PRD from the conducted sessions which will be chaotic
when the sprint is running. This kind of methodology has brought 80% software
developers are unhapp based on 2024 survey.

So these are the problems with the current methodologies:

1. There is no rapid feedback on the result of the proposed system or algorithm
design this bring more risks to the “project”

2. The quality depends on the QA team and this is a disaster since QA understanding
is based on the quality of the PRD and it is impossible to test all the scenarios

3. It creates more pressure to the engineers because they have to grasp the

requirements in short amount of time and then coded the solution in short amount

https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://shiftmag.dev/unhappy-developers-stack-overflow-survey-3896/
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fc2d62a996ecf&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderCollection&source=post_page---top_nav_layout_nav---
https://medium.com/?source=post_page---top_nav_layout_nav---
https://medium.com/me/notifications?source=post_page---top_nav_layout_nav---

of time

4. It is almost impossible to verify the correctness of distributed systems manually

So what is the solution to those problems? The solution is to use formal methods.
IBM has been using formal methods to develop their hardware and software and it
has resulted in their system being used 24/7 non-stop in banks all over the world
without crash. But we don’t need to wear suit like them we can still use t-shirt and

informal clothing.

The formal methods tooling that we can use is TLA+. If you want to see in a glance
what TLA+ you can refer to this post. One of outstanding performance of TLA+ is on
AWS case. The engineers was banging their head because of a bug in their

distributed system and TLA+ succesfully help them to solve the bug.

In this article, I will use a real PRD develop by a Product Manager that shared on
reddit. These are the pages of the PRD:

https://medium.com/practical-software-craftsman/setting-up-tla-toolbox-96c58fb3f79f
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://www.reddit.com/r/ProductManagement/comments/95w0rl/a_sample_prd_product_requirements_document_i_made/

Adding Two-factor Authentication

Target release End of Q3 2018

Epic @PD-24 - Adding 2 factor authentication using Google Authenticator
IN PROGRESS

Document status UNDER REVIEW

Designer @Designer
Developers @8DM
@SDE 1, @SDE 2, @SDE 3

QA @QA 1, @QA 2

Goals

Offer clients and users the option to add an additional layer of security when accessing their accounts through (il portals
Ensure the integrity of the client-server connection when a user's Google Authenticator app is used

Streamline 2FA enablement for users using the same sleek interface expected of a @ipproduct

Develop a marketing campaign to communicate with our customers about this new feature

Offer a clear recovery path for users that lose access to their device

Background

Two-factor authentication (2FA) has been widely adopted by every large technology platform and is a component of security that customers have
come to expect from businesses. Here at! we often handle highly sensitive documents and information and it is imperative that we add this
additional layer of security for customers that request it. Additionally, in the case of User Onboarding and High Risk Transactions, we should
consider making 2FA a mandatory part of the sign-up process as these use cases have the highest probability for fraud.

2FA requires users to have access to an additional identifier beyond username and password. When a user enables 2FA through Google
Authenticator, a personal key is created as an identifier for the device used. From there on, users with 2FA enabled will need their username,
password, and device in order to log in. While this in itself serves as a layer of security, the Google Authenticator app also introduces a time
variable: each code generated is only valid for 30 seconds.

Assumptions

* Customers will use 2FA when they log in through mobile, web, and desktop portals
* Users do not need a Google Account to use Google Authenticator
* All devices with Google Authenticator installed will use NTP for clock syncronization

User Types

The option to enable 2FA will be available to all users with an account. As such, no distinction will be made between different user types.

Use Cases

When reviewing the requirements below, consider that users may be logging in through our mobile app, through our website, or through our
desktop portals. While implementation and UX may differ between these channels, core functionality and features should be consistent and the
experience should be seamless to the end user (i.e., fully integrated as a native feature).

Page 1

Requirements

The below requirements use the MoSCoW method of pricritization; from greatest to least importance: Must have, Should have, Could have, Won't

have
Title
1 Google

Authenticator
Implementation

2 2FA
Onboarding

3 2FA Indicator

4 2FA Enabling

5 2FA Disabling

6 2FA Login

7 Access
Recovery

8 In-app
Walkthrough

User Story

Developer: | need to design and implement framework to interact with the Google
Authenticator app. The final framework should be able to generate secrets, generate codes,
validate codes, and display a QR code fo facilitate quicker 2FA enabling (.D-S?).

For security considerations, codes generated should truly be one-time use (i.e., cannot be
reused even in the same time window) and the number of unsuccessful verifications per
session should be limited.

User: I'm a bit of a security novice, though | recognize its importance. It would be really
helpful if your app or website walked me through the process of enabling 2FA and setting up
Google Authenticator on my device.

User: | recognize the importance of securing my account and since my company uses Jumio
products to handle sensitive information it is only beneficial to add this extra layer of security.
| expect a clear indicator of whether or not 2FA is enabled, and the option to enable 2FA if it
is not currently enabled. | would expect this feature to exist in the same tab my other
password and security tools.

User: | want the fastest and simplest way to enable 2FA. The Google Authenticator app
allows me the option to use a QR code to connect my device with my accounts on other
websites. Some websites required me to manually type in an identifier into the app on my
phone - | must have gotten it wrong three times before it finally went through. Using the
camera on my phone is much easier and faster.

User: | lost my phone and need to enable 2FA on a new device. I've already installed Google
Authenticator on my new phone and would like to temporarily disable 2FA so that | can set it
up again.

User: Now that | have enabled 2FA, | expect the login process to prompt for the code from
the Google Authenticator app on my device.

User: My Google account was hacked into and Google support is taking a long time to help
with the Authenticator app. | need another way to recover access to my' account as a
last resort! Since this is my last resort, | don't expect this to be an easy or convenient task.

PM: | want an engaging way to let customers know about our new 2FA feature and we have
historically gotten best reach through these types of feature tutorials. This should briefly
explain the feature, how to enable it, and then overlay graphics on the landing page to help
users identify where the feature is located. The walkthrough should only be visible the first
time a user logs in after deployment.

User interaction and design

Importance

Must have

Could have

Must have

Must have

Must have

Must have

Must have

Should have

Notes

@FD-25 - Goog
le Authenticator
Implementation

DONE|

@PD-26 - 2FA
Onboarding
TO DO

@PD-33- 2FA
Indicator | TO DO

@FD-31- 2FA
Enabling
IN PROGRESS

@FPD-27 - 2FA
Disabling | TO DO

@PD-30 - 2FA
Login |TO DO

@PD-28 - Acce
ss Recovery
TO DO

@PD-32- In-ap
p Walkthrough
TO DO

2FA Enabling: (Il goes to the Security tab on her "My Account" page after logging in. She identifies that 2FA is not enabled and clicks on
the indicator to begin the enabling process. A pop-up briefly explains what 2FA is and that the Google Authenticator app will need to be installed
on their mobile device. To continue with the process, (Il is prompted to enter her password even though she is already logged in. A QR code
is displayed to be read by the Google Authenticator app. After successtully connecting the device to@ s account, she is prompted to enter
the code generated in the Google Authenticator app to make sure everything is configured correctly. If unsuccessful, additional text indicates that
the code did not work. If successful, the pop up displays a message confirming that 2FA is enable and the indicator in the Security tab should also
reflect that 2FA is enabled.

Here is an example of what the enabled feature could look like in the Security tab:

Page 2

Two-step verification

On .j

Authenticator app Edit

Show

2FA disabling: In order to disable 2FA, @l \ocates the 2FA indicator in the Security tab and clicks to begin the disabling process. She is
prompted to enter her password in order to disable the feature.

Here is an example of what the disabled feature could lock like in the Security tab:

Two-step verification 3
Of

Logging in with 2FA enabled: After entering her username and password,-sees a separate web page prompting her for the code in her
Google Authenticator app. After opening the app, she notes that the time window for the codes displayed is closing soon and waits until the code
refreshes before entering it on the web page. If validation is successful, she is forwarded to her account landing page.

An example of an "In-app" tutorial or walkthrough:

Release Criteria

* Functionality: All "Must-have" requirements must be met and tested.

* Usability: All new pages and workflows must match the visual aesthetics and design of the existing @illil?log in and account
management features.

* Reliability/Performance: Implementation of the Google Authenticator framework must not significantly increase the login failure rate or
the client-server connection times for logging in. Workflow time for login with 2FA enabled should be < 1 min, and < 10 min for enabling
2FA as a first time user.

Questions
Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

Page 3

How will we communicate = Product team is working on the email campaign and blog post to introduce the feature to our customers. If
the feature to customers? bandwidth allows, we should also have a web-based or app-based walkthrough that will let users know about the
feature and where/how to enable it when the log in for the first time after rollout.

Will we have to support
Google Authenticator app
installation or issues?

How many users do we
intend to support initially?

What kind of UX testing
will be done?

Not Doing

* Non-Google Time-based One Time Password app for users that can't or do not wish to use Google Authenticator - out of scope for initial
release but we may want to consider this as an additional option in the future.
* Device recognition - some users may wish to enable 2FA initially and then only when logging in from new devices.

Page 4

By reading the PRD we come up with this system design:

Run

CheckLoggedin

Disabling2Fa] Success or failed disabling 2FA

not logged in
already logged in

enable or disable 2FA

MainMenu Login

2FA disabled
logout ed
i eagntout 2FA enabled
LoggingOut
disabling REA
(— . —“] recovery
SecurityConfirmation CoufimzRREocle

recovered and 2FA disabled \

AccessRecovery

2FA code confirmed

2EA code

ailed
enabling 2FA [security confirmed

LinkingAuthenticator

We refined the PRD into a statechart diagram so we can see the transitions from

login to enabling the 2FA setting and seen the impact when logging out and re-

loggin in again, the sytem will ask for 2FA code. Also when disabling the 2FA the

statechart reflect the impact when re-logging in again. After successfull recovery the

system will ask the user to relogin again and the 2FA settings will be disabled so

after successful login the system will not asked for 2FA code anymore.

We will continue refining the PRD with TLA+.

MODULE TwoFactor
EXTENDS Naturals, Sequences, TLC

USERS_DATA_IN_DATABASE == [
u-id \-in {lll”) llzll, ||3||’ ll4ll} |_>
CASE wuid = "1" -> [id [-> "1",
[] u-id = ||2|| -> [-id |_> ||2||’
[] u-id = ||3|| _> [-id |_> ll3l|’
[] u-id = ||4|| -> [-id |_> ||4||’
]

VALID_USERIDS

DOMAIN USERS_DATA_IN_DATABASE

2FA_enabled
2FA_enabled
2FA_enabled
2FA_enabled

ALL_REQUEST_DATA ==

[
u-id \-in {Hlll’ IIZH’ ||3ll’ ll4||} |_>

CASE uid = "1" -> [
requested_operation |-> "UN
userId |-> "1",
auth_token |-> FALSE,
security_confirmation_toker
]
[] uid = "2" -> [
requested_operation |-> "UN
userId |-> "2",
auth_token |-> TRUE,
security_confirmation_toker
]
[] uid = "3" -> [
requested_operation |-> "UN
userId |-> "3",
auth_token |-> FALSE,
security_confirmation_toker
]
[1 uid = "4" -> [
requested_operation |-> "UN
userId |-> "4",
auth_token |-> FALSE,
security_confirmation_toker
]

]
MAX_ITERATIONS == 100

VARIABLES
operations_log,
request_data,
user_rows

vars ==
<<
operations_log,
request_data,
user_rows
>>

First we include the Naturals, Sequences, TLC module. Then we abstracted the

database using a TLA+ function that return these TLA+ structures:

[id |-> "1", 2FA_enabled |-> FALSE]

Each structure representing the 2FA settings for each user ids. The structure above

is equivalent to this JavaScript object literal:

{
id: "1",
2FA_enabled: false

The users_DATA_IN_DATABASE is a TLA+ function that maps each user ids into the

structure above. It is equivalent to this:

{
"iroe {
id: "1",
2FA_enabled: false
b
o {
id: "2",
2FA_enabled: true
b
"3 {
id: "3",
2FA_enabled: false
i
g o {
id: "4",
2FA_enabled: true
}
}

The vaLip_userips is a TLA+ set that equivalent to this JS array:

[lllll’ ||2l|, l|3ll, ||4|l:|

The ALL_REQUEST_DATA is combined with the users_IN_DATABASE to specify these four

different scenarios:

User ID Authentication Token 2FA Enabled
1 FALSE FALSE
2 TRUE TRUE
3 FALSE FALSE
4 FALSE TRUE

We have to specify how many iterations our spec will continue to run in
MAX_ITERATIONS so the model checker can finished in less time (it should be running
in less than a minute otherwise it is too long). What it means is, TLA+ model checker

will visit all the states automatically and if we don't specify the termination
(MAX_ITERATIONS) then we have to wait for a long time for it to finished, probably
never. Below it is our variables that is required for TLA+ model checker to transition

between states.

For each states in our statechart diagram we will implement it as a TLA+ operator.
Inside the state’s operator it will contains the preconditions and the formula to do

the transitions.

REQUEST_DATA_FOR_TESTING ==
request_data["1"]

\ * , request_data["2"]

\ * , request_data["3"]
}

Init ==

/\ operations_log = [uid \in VALID_USERIDS |-> <<>>]
/\ request_data = ALL_REQUEST_DATA
/\ user_rows = USERS_DATA_IN_DATABASE

Next ==
/\ \E request \in REQUEST_DATA_FOR_TESTING:

/\ \/ CheckAlreadylLoggedIn(request)
\/ Login(request)
\/ AccessRecovery(request)
\/ MainMenu(request)
\/ Confirm2FACode(request)
\/ SecurityConfirmation(request)

\/ Disabling2FA(request)
\/ LinkingAuthenticator (request)
\/ Logout(request)

Spec == Init /\ [][Next]_vars

Every TLA+ spec must have an 1nit and Next operator. In Init we initialize the
VARIABLES with the initial values. In our case we initialize the operations_log with
an empty TLA+ sequence. It is equivalent to an empty array in a programming
language. We assign the request_data with the contents of the ALL_REQUEST_DATA . We
need to create the variable because we have to change the contents of it. The last

variable is the user_rows which will emulate our database rows.

In our Next we iterate the REQUEST DATA_FOR_TESTING set and for each item we hand

over it to TLA+ model checker and it is up to the model checker which states to visit.

The spec contains a temporal operator [][Next]_vars itis justto specify our spec
allows stuttering. A stuttering is required since TLA+ is built based on physics where
in physics the system can transition without any changed in the variables but it is

just to specify the other variables in the universe is changing.

Now, let’s see the specification for each node in the statechart:

***xxxx* State machine implementation

CheckAlreadylLoggedIn(request) ==
/\ request.requested_operation = "UNSET"
/\ IF request.auth_token THEN
RedirectTo("MainMenu", request)
ELSE
RedirectTo("Login", request)
/\ LogOperation("CheckAlreadylLoggedIn", request, request_data'[request.user
/\ UNCHANGED <<user_rows>>

IsLoginSuccess(request) == RandomElement({FALSE, TRUE})

Login(request) ==
/\ request.requested_operation = "Login"
/\ ~request.auth_token
/\ request.userId \in VALID_USERIDS

/\ IF IslLoginSuccess(request) THEN
IF user_rows[request.userId].2FA_enabled THEN
RedirectTo("Confirm2FACode", request)
ELSE
RedirectToAndAssignAuthToken("MainMenu", request)
ELSE
RedirectTo("Login", request)
/\ LogOperation("Login", request, request_data'[request.userId], user_rows)
/\ UNCHANGED user_rows

AccessRecovery(request) ==
/\ request.requested_operation = "AccessRecovery"
/\ ~request.auth_token
/\ request.userId \in VALID_USERIDS
/\ RedirectTo("Login", request)
/\ LogOperation("AccessRecovery'", request, request_data'[request.userId], L
/\ UNCHANGED <<user_rows>>

ChooseAMenu (request) ==
\/ RedirectTo(RandomElement ({"Logout", "Enable2FA", "Disable2FA"}), rec

MainMenu(request) ==
/\ request.auth_token
/\ request.requested_operation = "MainMenu"
/\ request.userId \in VALID_USERIDS
/\ ChooseAMenu(request)
/\ LogOperation("MainMenu", request, request_data'[request.userId], user_rc
/\ UNCHANGED <<user_rows>>

Logout(request) ==
/\ request.auth_token
/\ request.requested_operation = "Logout"
/\ RedirectToAndDiscardAuthToken("Login", request)
/\ LogOperation("Logout", request, request_data'[request.userId], user_rows
/\ UNCHANGED <<user_rows>>

Confirm2FACode (request) ==

/\ ~request.auth_token

/\ request.requested_operation = "Confirm2FACode"

/\ IF RandomElement({"MainMenu", "AccessRecovery"}) = "MainMenu" THEN
RedirectToAndAssignAuthToken("MainMenu", request)
ELSE
RedirectTo("AccessRecovery", request)

/\ LogOperation("Confirm2FACode", request, request_data'[request.userId],

/\ UNCHANGED <<user_rows>>

SecurityConfirmation(request) ==
/\ request.auth_token
/\ (
\/ request.requested_operation = "Enable2FA"
\/ request.requested_operation = "Disable2FA"

/\

IF request.requested_operation = "Enable2FA" /\ ~2FA_IsEnabled(request)
RedirectToAndAssignSecurityConfirmationToken("LinkingAuthenticator", re
ELSE
IF request.requested_operation = "Disable2FA" /\ 2FA_IsEnabled(request)
RedirectToAndAssignSecurityConfirmationToken("Disabling2FA", reques
ELSE
RedirectTo("MainMenu", request)

/\ LogOperation("SecurityConfirmation", request, request_data'[request.user
/\ UNCHANGED <<user_rows>>
Disabling2FA(request) ==
/\ request.auth_token
/\ request.security_confirmation_token
/\ 2FA_IsEnabled(request)
/\ request.requested_operation = "Disabling2FA"
/\ Disable2FASetting(request)
/\ RedirectToAndDiscardSecurityConfirmationToken("MainMenu", request, "Logi
/\ LogOperation("Disabling2FA", request, request_data'[request.userId], us

LinkingAuthenticator (request) ==

/\
/\
/\
/\
/\
/\
/\

request.auth_token

request.security_confirmation_token

~2FA_IsEnabled(request)

request.requested_operation = "LinkingAuthenticator"
Enable2FASetting(request)
RedirectToAndDiscardSecurityConfirmationToken("MainMenu", request, '"Conf
LogOperation("LinkingAuthenticator", request, request_data'[request.user

In TLA+ /\ is a propositional logic Anp it is equivalent to && operator in JavaScript,

\/ isan orR , ~ is a negation. The first few /\ specify preconditions for each state.

And in every visit to each state we log the request and the response in the

operational_logs parameter. Later on we will iterate the contents of the log to verify

our invariants.

This is our utility operators that being called by each states:

\xxxx*x*x%* Utility operators

RedirectTo(operation_name, request) ==
request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndAssignSecurityConfirmationToken(operation_name, request) ==
request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndDiscardSecurityConfirmationToken(operation_name, request, before_c

request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndAssignAuthToken(operation_name, request) ==
request_data' = [request_data EXCEPT ![request.userId].requested_operation = of

RedirectToAndDiscardAuthToken(operation_name, request) ==
request_data' = [request_data EXCEPT ![request.userId].requested_operation

Enable2FASetting(request) ==

user_rows' = [user_rows EXCEPT ![request.userId].2FA_enabled = TRUE]
Disable2FASetting(request) ==
user_rows' = [user_rows EXCEPT ![request.userId].2FA_enabled = FALSE]

LogOperation(operation_name, original_request, updated_request, dbuser_rows) ==
operations_log' = [
operations_log EXCEPT ![original_request.userId] = Appe

]
/\ Len(operations_log'[original_request.userId]) <= MAX_ITERATIONS

2FA_IsEnabled(request) == user_rows[request.userId].2FA_enabled

To take advantage of the TLA+ model checker we have to write invariants to verify

our spec is conform withthe invariants:

Confirm2FACodeRequestedProperlyAfterLoginPerUser (operations_log_per_user) ==
\/ operations_log_per_user = <<>>
\/ \A i \in 1..Len(operations_log_per_user):
LET log == operations_log_per_user[i] IN
IF log.operation = "Login" /\ log.updated_request.auth_token Tk
IF log.dbuser_rows[log.original_request.userId].2FA_enablec
log.updated_request.requested_operation = "Confirm2FACc
ELSE
TRUE
ELSE
TRUE

Confirm2FACodeRequestedProperlyAfterLogin ==
\A request \in REQUEST_DATA_FOR_TESTING:
/\ Confirm2FACodeRequestedProperlyAfterLoginPerUser (operations_log|

ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASettingPerUser
\/ operations_log_per_user = <<>>
\/ \A i \in 1l..Len(operations_log_per_user):
LET log == operations_log_per_user[i] IN
IF log.original_request.requested_operation = "Enable2FA" \/ 1lc
log.operation = "SecurityConfirmation"
ELSE
TRUE

ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASetting ==
\A request \in REQUEST_DATA_FOR_TESTING:
ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASett-ir

Confirm2FASettingUpdatedPerUser (operations_log_per_user) ==
\/ operations_log_per_user = <<>>
\/ \A i \in 1..Len(operations_log_per_user):
LET log == operations_log_per_user[i] IN
IF log.operation = "LinkingAuthenticator" /\ log.updated_reques
log.dbuser_rows[log.original_request.userId].2FA_enabled =
ELSE
IF log.operation = "Disabling2FA" /\ log.updated_request.re
log.dbuser_rows[log.original_request.userId].2FA_enable
ELSE
TRUE

Confirm2FASettingUpdated ==
\A request \in REQUEST_DATA_FOR_TESTING:
Confirm2FASettingUpdatedPerUser (operations_log[request.userId])

AccessRecoveryIsVisitedAtLeastOncePerUser (operations_log_per_user) ==
\/ operations_log_per_user = <<>>
\/ Len(operations_log_per_user) <= MAX_ITERATIONS - 1
\/ \E i \in 1..Len(operations_log_per_user):
LET log == operations_log_per_user[i] IN
log.operation = "AccessRecovery"

AccessRecoverylIsVisitedAtLeastOnce ==

\A request \in REQUEST_DATA_FOR_TESTING:
AccessRecoveryIsVisitedAtLeastOncePerUser (operations_log[request.userIc

These are the invariants that we specify:

1. Make sure every time the user is logged in the system asking for the 2FA code (if
the 2FA setting is enabled for the user)

2. Make sure every time the user is enabling or disabling the 2FA setting, the
system will asked for security confirmation

3. Make sure the system updates the 2FA setting for each enabling or disabling 2FA

4. Make sure the access recovery is working as specified

Then we can ask TLA+ model checker to verify our spec and make sure there is no
deadlock and it passed the invariants checking.

=] What to check?

Deadlock
[=] Invariants
Formulas true in every reachable state.

Confirm2FACodeRequestedProperlyAfterLogin

 Add
ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASetting
Confirm2FASettingUpdated

Edit
AccessRecoverylsVisitedAtLeastOnce

Remove

Beside using invariants we can also check the trace manually to see how TLA+

model checker verify our spec. Below is an example of the traces:

Error-Trace e L 4 £ <1"==i>

Name Value

~r wrrue trmma et CRES TR vy

v B oper... ("1":> <<|original_request |-> [requested_operation |-> "UNSET", userld |->...
v @ """ <<foriginal_request |-> [requested_operation |-> "UNSET", userld |-> "1", aut...
[original_request |-> [requested_operation |-> "UNSET", userld |-> "1", auth_...
® [original_request |-> [requested_operation |-> "Login", userld |-> "1", auth_to...
@ [original_request |-> [requested_operation |-> "MainMenu", userld |-> "1", au...
[original_request |-> [requested_operation |-> "Logout", userld |-> "1", auth_t...
[original_request |-> [requested_operation |-> "Login", userld |-> "1", auth_to...
[original_request |-> [requested_operation |-> "MainMenu", userld |-> "1", au...
[original_request |-> [requested_operation |-> "Enable2FA", userld |-> "1", au...
[original_request |-> [requested_operation |-> "LinkingAuthenticator", userld...
[original_request |-> [requested_operation |-> "MainMenu", userld |-> "1, au...
@ [original_request |-> [requested_operation |-> "Enable2FA", userld |-> "1", au...
[original_request |-> [requested_operation |-> "MainMenu", userld |-> "1", au...
[original_request |-> [requested_operation |-> "Logout", userld |-> "1", auth_t...
[original_request |-> [requested_operation |-> "Login", userld |-> "1", auth_to...
[original_request |-> [requested_operation |-> "Confirm2FACode", userld |->...
[original_request |[-> [requested_operation |-> "AccessRecovery"”, userld |-> "...
[original_request |-> [requested_operation |-> "Login", userld |-> "1", auth_to...
[original_request |-> [requested_operation |-> "Confirm2FACode", userld |->...
[original_request |-> [requested_operation |-> "MainMenu", userld |-> "1", au...
[original_request |[-> [requested_operation |-> "Disable2FA", userld |-> "1", a...
[original_request |-> [requested_operation |-> "Disabling2FA", userld [-> "1",...
[original_request |-> [requested_operation |-> "MainMenu", userld |-> "1", au...
[original_request |-> [requested_operation |-> "Logout", userld |-> "1", auth_t...
[original_request |-> [requested_operation |-> "Login", userld |-> "1", auth_to...
[original_request |-> [requested_operation [-> "MainMenu", userld |-> "1", au...

WOV VOV VWV VYV VYV WYY WYY YV WYY WYYV WYY WYY Y Y Y

[original_request |-> [requested_operation |-> "Logout", userld |-> "1", auth_t...

v

You can see from the trace the model checker automatically visits all the states.

After our spec passed the invariants checking then we can continue to implement
our spec into our chosen programming language. I will wrote another article for the

implementation later on.

Formal Verification Tla Plus Software Development Software Engineering

Software Testing

https://medium.com/tag/formal-verification?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/tla-plus?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-development?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-engineering?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-testing?source=post_page-----c2d62a996ecf---------------------------------------

