
Practical Software … · Following

Member-only story

Implementing Two Factor Authentication
Using Formal Methods
9 min read · 1 day ago

Irwansyah

Listen Share More

Well, every one knows Two Factor Authentication (TFA). Most probably already
implemented it in their own system. So what are the differences with this method?

It lies on using formal methods to implement the spec. Most will go from informal
specification which is some kind of PRD and then go straight to UML or codes. Any
unclear specification usually addressed ad hoc to the spec writer (the Product
Manager) or in a formal forum like a SCRUM grooming session or sprint planning
session. The result of the sprint will depends on the developer team (engineer and
QA) understanding of the PRD from the conducted sessions which will be chaotic
when the sprint is running. This kind of methodology has brought 80% software
developers are unhapp based on 2024 survey.

So these are the problems with the current methodologies:
1. There is no rapid feedback on the result of the proposed system or algorithm
design this bring more risks to the “project”
2. The quality depends on the QA team and this is a disaster since QA understanding
is based on the quality of the PRD and it is impossible to test all the scenarios
3. It creates more pressure to the engineers because they have to grasp the
requirements in short amount of time and then coded the solution in short amount

Open in app

Search

https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/practical-software-craftsman?source=post_page---publication_nav-7f4378f8ca71-c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://medium.com/@irwansyah?source=post_page---byline--c2d62a996ecf---------------------------------------
https://shiftmag.dev/unhappy-developers-stack-overflow-survey-3896/
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fc2d62a996ecf&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderCollection&source=post_page---top_nav_layout_nav---
https://medium.com/?source=post_page---top_nav_layout_nav---
https://medium.com/me/notifications?source=post_page---top_nav_layout_nav---

of time
4. It is almost impossible to verify the correctness of distributed systems manually

So what is the solution to those problems? The solution is to use formal methods.
IBM has been using formal methods to develop their hardware and software and it
has resulted in their system being used 24/7 non-stop in banks all over the world
without crash. But we don’t need to wear suit like them we can still use t-shirt and
informal clothing.

The formal methods tooling that we can use is TLA+. If you want to see in a glance
what TLA+ you can refer to this post. One of outstanding performance of TLA+ is on
AWS case. The engineers was banging their head because of a bug in their
distributed system and TLA+ succesfully help them to solve the bug.

In this article, I will use a real PRD develop by a Product Manager that shared on
reddit. These are the pages of the PRD:

https://medium.com/practical-software-craftsman/setting-up-tla-toolbox-96c58fb3f79f
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://www.reddit.com/r/ProductManagement/comments/95w0rl/a_sample_prd_product_requirements_document_i_made/

Page 1

Page 2

Page 3

Page 4

By reading the PRD we come up with this system design:

We refined the PRD into a statechart diagram so we can see the transitions from
login to enabling the 2FA setting and seen the impact when logging out and re-
loggin in again, the sytem will ask for 2FA code. Also when disabling the 2FA the
statechart reflect the impact when re-logging in again. After successfull recovery the
system will ask the user to relogin again and the 2FA settings will be disabled so
after successful login the system will not asked for 2FA code anymore.

We will continue refining the PRD with TLA+.

------------------------- MODULE TwoFactor -------------------------
EXTENDS Naturals, Sequences, TLC

USERS_DATA_IN_DATABASE == [
 uid \in {"1", "2", "3", "4"} |->
 CASE uid = "1" -> [id |-> "1", 2FA_enabled |
 [] uid = "2" -> [id |-> "2", 2FA_enabled |
 [] uid = "3" -> [id |-> "3", 2FA_enabled |
 [] uid = "4" -> [id |-> "4", 2FA_enabled |

]

VALID_USERIDS == DOMAIN USERS_DATA_IN_DATABASE

ALL_REQUEST_DATA ==
 [
 uid \in {"1", "2", "3", "4"} |->
 CASE uid = "1" -> [
 requested_operation |-> "UN
 userId |-> "1",
 auth_token |-> FALSE,
 security_confirmation_token
]
 [] uid = "2" -> [
 requested_operation |-> "UN
 userId |-> "2",
 auth_token |-> TRUE,
 security_confirmation_token
]

 [] uid = "3" -> [
 requested_operation |-> "UN
 userId |-> "3",
 auth_token |-> FALSE,
 security_confirmation_token
]
 [] uid = "4" -> [
 requested_operation |-> "UN
 userId |-> "4",
 auth_token |-> FALSE,
 security_confirmation_token
]

]
MAX_ITERATIONS == 100

VARIABLES
 operations_log,
 request_data,
 user_rows

vars ==
 <<
 operations_log,
 request_data,
 user_rows
 >>

First we include the Naturals, Sequences, TLC module. Then we abstracted the
database using a TLA+ function that return these TLA+ structures:

[id |-> "1", 2FA_enabled |-> FALSE]

Each structure representing the 2FA settings for each user ids. The structure above
is equivalent to this JavaScript object literal:

{
 id: "1",
 2FA_enabled: false
}

The USERS_DATA_IN_DATABASE is a TLA+ function that maps each user ids into the
structure above. It is equivalent to this:

{
 "1" : {
 id: "1",
 2FA_enabled: false
 },
 "2" : {
 id: "2",
 2FA_enabled: true
 },
 "3" : {
 id: "3",
 2FA_enabled: false
 },
 "4" : {
 id: "4",
 2FA_enabled: true
 }
}

The VALID_USERIDS is a TLA+ set that equivalent to this JS array:

["1", "2", "3", "4"]

The ALL_REQUEST_DATA is combined with the USERS_IN_DATABASE to specify these four
different scenarios:

We have to specify how many iterations our spec will continue to run in
MAX_ITERATIONS so the model checker can finished in less time (it should be running
in less than a minute otherwise it is too long). What it means is, TLA+ model checker
will visit all the states automatically and if we don’t specify the termination
(MAX_ITERATIONS) then we have to wait for a long time for it to finished, probably
never. Below it is our variables that is required for TLA+ model checker to transition
between states.

For each states in our statechart diagram we will implement it as a TLA+ operator.
Inside the state’s operator it will contains the preconditions and the formula to do
the transitions.

REQUEST_DATA_FOR_TESTING == {
 request_data["1"]
* , request_data["2"]
* , request_data["3"]
 }
Init ==
 /\ operations_log = [uid \in VALID_USERIDS |-> <<>>]
 /\ request_data = ALL_REQUEST_DATA
 /\ user_rows = USERS_DATA_IN_DATABASE

Next ==
 /\ \E request \in REQUEST_DATA_FOR_TESTING:
 /\ \/ CheckAlreadyLoggedIn(request)
 \/ Login(request)
 \/ AccessRecovery(request)
 \/ MainMenu(request)
 \/ Confirm2FACode(request)
 \/ SecurityConfirmation(request)

 \/ Disabling2FA(request)
 \/ LinkingAuthenticator(request)
 \/ Logout(request)

Spec == Init /\ [][Next]_vars

Every TLA+ spec must have an Init and Next operator. In Init we initialize the
VARIABLES with the initial values. In our case we initialize the operations_log with
an empty TLA+ sequence. It is equivalent to an empty array in a programming
language. We assign the request_data with the contents of the ALL_REQUEST_DATA . We
need to create the variable because we have to change the contents of it. The last
variable is the user_rows which will emulate our database rows.

In our Next we iterate the REQUEST_DATA_FOR_TESTING set and for each item we hand
over it to TLA+ model checker and it is up to the model checker which states to visit.

The Spec contains a temporal operator [][Next]_vars it is just to specify our spec
allows stuttering. A stuttering is required since TLA+ is built based on physics where
in physics the system can transition without any changed in the variables but it is
just to specify the other variables in the universe is changing.

Now, let’s see the specification for each node in the statechart:

******** State machine implementation

CheckAlreadyLoggedIn(request) ==
 /\ request.requested_operation = "UNSET"
 /\ IF request.auth_token THEN
 RedirectTo("MainMenu", request)
 ELSE
 RedirectTo("Login", request)
 /\ LogOperation("CheckAlreadyLoggedIn", request, request_data'[request.user
 /\ UNCHANGED <<user_rows>>

IsLoginSuccess(request) == RandomElement({FALSE, TRUE})

Login(request) ==
 /\ request.requested_operation = "Login"
 /\ ~request.auth_token
 /\ request.userId \in VALID_USERIDS

 /\ IF IsLoginSuccess(request) THEN
 IF user_rows[request.userId].2FA_enabled THEN
 RedirectTo("Confirm2FACode", request)
 ELSE
 RedirectToAndAssignAuthToken("MainMenu", request)
 ELSE
 RedirectTo("Login", request)
 /\ LogOperation("Login", request, request_data'[request.userId], user_rows)
 /\ UNCHANGED user_rows

AccessRecovery(request) ==
 /\ request.requested_operation = "AccessRecovery"
 /\ ~request.auth_token
 /\ request.userId \in VALID_USERIDS
 /\ RedirectTo("Login", request)
 /\ LogOperation("AccessRecovery", request, request_data'[request.userId], u
 /\ UNCHANGED <<user_rows>>

ChooseAMenu(request) ==
 \/ RedirectTo(RandomElement({"Logout", "Enable2FA", "Disable2FA"}), req

MainMenu(request) ==
 /\ request.auth_token
 /\ request.requested_operation = "MainMenu"
 /\ request.userId \in VALID_USERIDS
 /\ ChooseAMenu(request)
 /\ LogOperation("MainMenu", request, request_data'[request.userId], user_ro
 /\ UNCHANGED <<user_rows>>

Logout(request) ==
 /\ request.auth_token
 /\ request.requested_operation = "Logout"
 /\ RedirectToAndDiscardAuthToken("Login", request)
 /\ LogOperation("Logout", request, request_data'[request.userId], user_rows
 /\ UNCHANGED <<user_rows>>

Confirm2FACode(request) ==
 /\ ~request.auth_token
 /\ request.requested_operation = "Confirm2FACode"
 /\ IF RandomElement({"MainMenu", "AccessRecovery"}) = "MainMenu" THEN
 RedirectToAndAssignAuthToken("MainMenu", request)
 ELSE
 RedirectTo("AccessRecovery", request)
 /\ LogOperation("Confirm2FACode", request, request_data'[request.userId], u
 /\ UNCHANGED <<user_rows>>

SecurityConfirmation(request) ==
 /\ request.auth_token
 /\ (
 \/ request.requested_operation = "Enable2FA"
 \/ request.requested_operation = "Disable2FA"
)

 /\ IF request.requested_operation = "Enable2FA" /\ ~2FA_IsEnabled(request)
 RedirectToAndAssignSecurityConfirmationToken("LinkingAuthenticator", re
 ELSE
 IF request.requested_operation = "Disable2FA" /\ 2FA_IsEnabled(request)
 RedirectToAndAssignSecurityConfirmationToken("Disabling2FA", reques
 ELSE
 RedirectTo("MainMenu", request)
 /\ LogOperation("SecurityConfirmation", request, request_data'[request.user
 /\ UNCHANGED <<user_rows>>

Disabling2FA(request) ==
 /\ request.auth_token
 /\ request.security_confirmation_token
 /\ 2FA_IsEnabled(request)
 /\ request.requested_operation = "Disabling2FA"
 /\ Disable2FASetting(request)
 /\ RedirectToAndDiscardSecurityConfirmationToken("MainMenu", request, "Logi
 /\ LogOperation("Disabling2FA", request, request_data'[request.userId], us

LinkingAuthenticator(request) ==
 /\ request.auth_token
 /\ request.security_confirmation_token
 /\ ~2FA_IsEnabled(request)
 /\ request.requested_operation = "LinkingAuthenticator"
 /\ Enable2FASetting(request)
 /\ RedirectToAndDiscardSecurityConfirmationToken("MainMenu", request, "Conf
 /\ LogOperation("LinkingAuthenticator", request, request_data'[request.user

In TLA+ /\ is a propositional logic AND it is equivalent to && operator in JavaScript,
\/ is an OR , ~ is a negation. The first few /\ specify preconditions for each state.
And in every visit to each state we log the request and the response in the
operational_logs parameter. Later on we will iterate the contents of the log to verify
our invariants.

This is our utility operators that being called by each states:

******** Utility operators

RedirectTo(operation_name, request) ==
 request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndAssignSecurityConfirmationToken(operation_name, request) ==
 request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndDiscardSecurityConfirmationToken(operation_name, request, before_d

 request_data' = [request_data EXCEPT ![request.userId].requested_operation

RedirectToAndAssignAuthToken(operation_name, request) ==
request_data' = [request_data EXCEPT ![request.userId].requested_operation = op

RedirectToAndDiscardAuthToken(operation_name, request) ==
 request_data' = [request_data EXCEPT ![request.userId].requested_operation

Enable2FASetting(request) ==
 user_rows' = [user_rows EXCEPT ![request.userId].2FA_enabled = TRUE]

Disable2FASetting(request) ==
 user_rows' = [user_rows EXCEPT ![request.userId].2FA_enabled = FALSE]

LogOperation(operation_name, original_request, updated_request, dbuser_rows) ==
 operations_log' = [
 operations_log EXCEPT ![original_request.userId] = Appe

]
 /\ Len(operations_log'[original_request.userId]) <= MAX_ITERATIONS

2FA_IsEnabled(request) == user_rows[request.userId].2FA_enabled

To take advantage of the TLA+ model checker we have to write invariants to verify
our spec is conform withthe invariants:

Confirm2FACodeRequestedProperlyAfterLoginPerUser(operations_log_per_user) ==
 \/ operations_log_per_user = <<>>
 \/ \A i \in 1..Len(operations_log_per_user):
 LET log == operations_log_per_user[i] IN
 IF log.operation = "Login" /\ log.updated_request.auth_token TH
 IF log.dbuser_rows[log.original_request.userId].2FA_enabled
 log.updated_request.requested_operation = "Confirm2FACo
 ELSE
 TRUE
 ELSE
 TRUE

Confirm2FACodeRequestedProperlyAfterLogin ==
 \A request \in REQUEST_DATA_FOR_TESTING:
 /\ Confirm2FACodeRequestedProperlyAfterLoginPerUser(operations_log[

ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASettingPerUser
 \/ operations_log_per_user = <<>>
 \/ \A i \in 1..Len(operations_log_per_user):
 LET log == operations_log_per_user[i] IN
 IF log.original_request.requested_operation = "Enable2FA" \/ lo
 log.operation = "SecurityConfirmation"
 ELSE
 TRUE

ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASetting ==
 \A request \in REQUEST_DATA_FOR_TESTING:
 ConfirmAskingForSecurityConfirmationEveryTimeEnablingDisabling2FASettin

Confirm2FASettingUpdatedPerUser(operations_log_per_user) ==
 \/ operations_log_per_user = <<>>
 \/ \A i \in 1..Len(operations_log_per_user):
 LET log == operations_log_per_user[i] IN
 IF log.operation = "LinkingAuthenticator" /\ log.updated_reques
 log.dbuser_rows[log.original_request.userId].2FA_enabled =
 ELSE
 IF log.operation = "Disabling2FA" /\ log.updated_request.re
 log.dbuser_rows[log.original_request.userId].2FA_enable
 ELSE
 TRUE

Confirm2FASettingUpdated ==
 \A request \in REQUEST_DATA_FOR_TESTING:
 Confirm2FASettingUpdatedPerUser(operations_log[request.userId])

AccessRecoveryIsVisitedAtLeastOncePerUser(operations_log_per_user) ==
 \/ operations_log_per_user = <<>>
 \/ Len(operations_log_per_user) <= MAX_ITERATIONS - 1
 \/ \E i \in 1..Len(operations_log_per_user):
 LET log == operations_log_per_user[i] IN
 log.operation = "AccessRecovery"

AccessRecoveryIsVisitedAtLeastOnce ==
 \A request \in REQUEST_DATA_FOR_TESTING:
 AccessRecoveryIsVisitedAtLeastOncePerUser(operations_log[request.userId

These are the invariants that we specify:

1. Make sure every time the user is logged in the system asking for the 2FA code (if
the 2FA setting is enabled for the user)

2. Make sure every time the user is enabling or disabling the 2FA setting, the
system will asked for security confirmation

3. Make sure the system updates the 2FA setting for each enabling or disabling 2FA

4. Make sure the access recovery is working as specified

Then we can ask TLA+ model checker to verify our spec and make sure there is no
deadlock and it passed the invariants checking.

Beside using invariants we can also check the trace manually to see how TLA+
model checker verify our spec. Below is an example of the traces:

You can see from the trace the model checker automatically visits all the states.

After our spec passed the invariants checking then we can continue to implement
our spec into our chosen programming language. I will wrote another article for the
implementation later on.

Formal Verification Tla Plus Software Development Software Engineering

Software Testing

https://medium.com/tag/formal-verification?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/tla-plus?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-development?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-engineering?source=post_page-----c2d62a996ecf---------------------------------------
https://medium.com/tag/software-testing?source=post_page-----c2d62a996ecf---------------------------------------

