[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[tlaplus] Defining linearity of integrals using Temporal Logic of Actions
I would like to make a proof using Temporal Logic of Actions (TLA) to show the linearity of the Fourier Transform. I want to define the linearity of integrals so that I can using as a conditions in the proof.
Perhaps with a let using some letter to define the action, say `A`. Then say that `by A` means by the linearity of integrals at the end of the line How would it look like?
For instance I can define the action
$\mathcal{I}(h(t)) \triangleq \int_a^b h(t) \, dt$
and stating linearity of integrals as an axiom
$\text{Linearity} : \quad \mathcal{I}(a f(t) + b g(t)) = a \mathcal{I}(f(t)) + b \mathcal{I}(g(t))$
The proof would look like
$\mathcal{F}\{h(t)\} = \int_{-\infty}^{\infty} \big(a f(t) + b g(t)\big) e^{-i\omega t} \, dt$
$\mathcal{F}\{h(t)\} = a \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt + b \int_{-\infty}^{\infty} g(t) e^{-i\omega t} \, dt \;\;\;$ by [linearity]
What should I put instead of `by [linearity]` in my proof and how would the linearity statement be defined?
$\rule{8cm}{0.3mm}$
Have proceeded as follows
LET: $\;\;\; h(t) \triangleq a \cdot f(t) + b \cdot g(t)$
$\;\;\;\;\;\;\; \mathcal{I}(h(t)) \triangleq \int_a^b h(t) \, dt = a \int_a^b f(t) \, dt + b \int_a^b g(t) \, dx$
$\;\;\;\;\;\;\; \mathcal{F}\{h(t)\} \triangleq \int_{-\infty}^{\infty} h(t) \, e^{-i\omega t} \, dt$
$\langle 1 \rangle \;\; \mathcal{F}\{h(t)\} = \int_{-\infty}^{\infty} (a f(t) + b g(t)) \, e^{-i\omega t} \, dt$
$\quad\quad\quad\quad \;\;\; = \int_{-\infty}^{\infty} a \left( f(t) e^{-i\omega t} \right) + b \left( g(t) \, e^{-i\omega t} \right) \, dt$
$\quad\quad\quad\quad \;\;\; = a \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt + b \int_{-\infty}^{\infty} g(t) e^{-i\omega t} \, dt \;\;\;\;\; [\mathcal{I}(h(t))]$
--
You received this message because you are subscribed to the Google Groups "tlaplus" group.
To unsubscribe from this group and stop receiving emails from it, send an email to tlaplus+unsubscribe@xxxxxxxxxxxxxxxx.
To view this discussion visit https://groups.google.com/d/msgid/tlaplus/692ec793-f351-4f96-abdf-b3fa0c7ecc9bn%40googlegroups.com.