--What you missed is the fact that if a safety property is satified by a
behavior b, then it is satisfied by the behavior that has the same
first N states as b and then halts--where halting means taking nothing
but stuttering steps. In your example, since PA and PC are safety
properties, they are both satisfied by the behavior (2, 2, 2, ...) --
a behavior not satisfied by PB. Hence |= (PC /\ PA => PB) is false,
so the implication is true. And I believe the lemma is true.Leslie
On Friday, March 15, 2019 at 9:56:22 PM UTC-7, Apostolis Xekoukoulotakis wrote:I am unable to prove this direction :If PA , PB , PC are safety properties , thenif ⊨ ((PC /\ PA) => PB) , then ⊨ (PC => (PA -▹ PB))Consider closed sets1 . PA : all sequences with prefix (2 , 4 , ....)2 . PC : all sequences with prefix (2 , 5 , ...)3 . PB : all sequences with prefix (3 , ....)All sets are closed, aka they are safety properties, and the condition is true.However , for sequence a = (2 , 5 , ...) , the result of the lemma is not true.since a belongs at PC, and the finite prefix (2) belongs at PA, but the prefix (2) does not belong at PB, as it should.Am I missing something? Maybe I made an error in the definitions .
You received this message because you are subscribed to the Google Groups "tlaplus" group.
To unsubscribe from this group and stop receiving emails from it, send an email to tlaplus+unsubscribe@xxxxxxxxxxxxxxxx.
To post to this group, send email to tlaplus@xxxxxxxxxxxxxxxx.
Visit this group at https://groups.google.com/group/tlaplus.
For more options, visit https://groups.google.com/d/optout.