
module gear
extends Integers, TLAPS

Without loss of generality, see our figures, the point of view vector z is 〈0, 0, 1〉, as the gear

wheel lies in the plane (O , X , Y ); where O is the center of the gear wheel.

Still without loss of generality, such wheel has constant radius 1.

variables x , y 3D vectors of the physical space.

Without loss of generality, we only pick x , y in the following Circle; see above assumptions.

abs[t ∈ Int ]
∆
= if t > 0 then t else − t

Circle is a subset of Int × Int × {0}; which is infinite. . . This works (slowly ! )if you add
additional constraints in InvX , InvY (See the “Unecessay if . . ” comment). IF NOT, then it

fails: TLAPS will not solve any polynomial equation for you.

Note that TLC will not like it either and will raise the usual “non-enumerable set” exception.

Circle
∆
= {

w ∈ Int × Int × {0} :
Manhattan norm:

∧ abs[w [1]] + abs[w [2]] = 1
Euclidian norm:

∧ abs[w [1]] ∗ abs[w [1]] + abs[w [2]] ∗ abs[w [2]] = 1
}

Better use this Circle if you want TLC be nice to your spec. You can drop the additional

constaints in InvX , InvY (see above), since CircleTLC is now a subset of a FINITE set.

CircleTLC
∆
= {

w ∈ { − 1, 0, 1} × { − 1, 0, 1} × {0} : abs[w [1]] + abs[w [2]] = 1
}

Simpler is better: Straighforward definition of Circle:

CircleEnum
∆
= {

〈1, 0, 0〉, 〈 − 1, 0, 0〉,
〈0, 1, 0〉, 〈0, − 1, 0〉

}
You may drop “by def . . . abs” whether you use it.

InnerProd is the usual inner product x · y. Hence

InnerProd
∆
= x [1] ∗ y [1] + x [2] ∗ y [2]

Our assumption z = 〈0, 0, 1〉 implies that the matrix [x y z ] has determinant

Det := x [1] ∗ y[2]− x [2] ∗ y[1].

Hence the following operator Det

Det
∆
= if (x ∈ Circle ∧ y ∈ Circle) then x [1] ∗ y [2]− x [2] ∗ y [1] else 0

InvX : x is picked in Circle ∗ ; now x is fixed and MUST NOT change.

InvX
∆
=

1



∧ x ∈ Circle
Unnecessary if Circle is explicitely defined as a finite set:

∧ x [1] ∈ { − 1, 1}
∧ x [2] = 0

InvY y is picked in Circle as well.

InvY
∆
=

∧ y ∈ Circle
∧ y [1] = 0
Unnecessary if Circle is explicitely defined as a finite set:

∧ y [2] ∈ { − 1, 1}

InvXY : x and y MUST BE nontrivially orthogonal.

InvXY
∆
=

∧ x ∈ Circle
∧ y ∈ Circle
∧ InnerProd = 0

Our invariant 2Inv is now “controlled” by the follwing Inv .

Inv
∆
=
∧ InvX
∧ InvY
∧ InvXY

The Next action:

Next
∆
=

Boundaries

∧ y ∈ Circle
∧ x ∈ Circle
So, x no action will ever change x :

∧ unchanged x
∧ y ′ ∈ Circle You want to request that.

y is flipped in the sense that y ′ := − y :

∧ y ′ = [y except ! [1] = − y [1], ! [2] = − y [2]]

Our spec Spec, then. Remark that Inv is also the initial condition.

Spec
∆
= Inv ∧2[Next ]〈x , y〉

Typing variables: Relevant type is Circle.

Typing(v)
∆
= v ∈ Circle

The following lemma states that Next preserves Inv .

lemma LemInv
∆
= Inv ∧Next ⇒ Inv ′

〈1〉 suffices assume Inv ∧Next
prove Inv ′

obvious
〈1〉1 Inv ∧Next ⇒ InvX ′

2



by def InvX , InvXY , Inv , Next
〈1〉2 Inv ∧Next ⇒ InvY ′

by def InvY , InvXY , Inv , Next , Circle
〈1〉3 Inv ∧Next ⇒ InvXY ′

by def InvXY , Inv , Next , Circle, InnerProd
〈1〉4 qed by 〈1〉1, 〈1〉2, 〈1〉3 def Inv

Equivalently, the invariant 2Inv is true under specs Spec.

theorem ThInv
∆
= Spec ⇒ 2Inv

〈1〉1 Inv ∧ unchanged 〈x , y〉 ⇒ Inv ′

by def Circle, InnerProd , InvX , InvY , InvXY , Inv
〈1〉2 Inv ∧2[Next ]〈x , y〉 ⇒ 2Inv

by PTL, LemInv , 〈1〉1
〈1〉 qed by PTL, 〈1〉1, 〈1〉2 def Spec

ThInv straightforwardly establishes that, under specification Spec, x , y, have always type

Circle.

ThType: Stephan’s version.

theorem ThTypeCompactVersion
∆
= Spec ⇒ 2Typing(x ) ∧2Typing(y)

〈1〉.Inv ⇒ Typing(x ) ∧ Typing(y)
by def Inv , InvX , InvY , Typing
〈1〉.qed
by ThInv , PTL

ThType: Stephan’s version, with a suffices assume − prove .

theorem ThType
∆
= Spec ⇒ 2Typing(x ) ∧2Typing(y)

〈1〉 suffices assume Spec
prove
∧ Spec ⇒ 2Inv
∧ Inv ⇒ Typing(x ) ∧ Typing(y)
by PTL def Inv , InvX , InvY , Typing

〈1〉 Inv ⇒ Typing(x ) ∧ Typing(y)
by def Inv , InvX , InvY , Typing

〈1〉 qed by ThInv , PTL

The following theorem asserts that there are only three options for the step det(x , y, z ) →
det(x ′, y ′, z ′):

1. det(x , y, z ) = det(x ′, y ′, z ) ∧ unchanged 〈x , y〉
2. det(x , y, z ) = 1 ∧ det(x ′, y ′, z ) = − 1 ∧Next

3. det(x , y, z ) = − 1 ∧ det(x ′, y ′, z ) = 1 ∧Next ;

which establishes that our spec is correct. qed

theorem ThOscillatingDet
∆
= Inv ∧Next ⇒

∧Det ∈ { − 1, 1}

3



∧Det ′ ∈ { − 1, 1}
∧Det ′ = −Det

〈1〉 suffices assume Inv ∧Next
prove
∧Det ∈ { − 1, 1}
∧Det ′ ∈ { − 1, 1}
∧Det ′ = −Det
obvious

〈1〉1 Inv ∧Next ⇒ Det ∈ { − 1, 1}
by def InvX , InvY , Inv , Next , Det , Circle, abs

〈1〉2 Inv ∧Next ⇒ Det ′ = −Det
by def InvX , InvY , Inv , Next , Det , Circle

〈1〉3 Inv ∧Next ⇒
∧Det ∈ { − 1, 1}
∧Det ′ = −Det
by 〈1〉1, 〈1〉2

〈1〉4 Det ∈ { − 1, 1} ∧Det ′ = −Det ⇒ Det ′ ∈ { − 1, 1}
obvious

〈1〉5 Inv ∧Next ⇒ Det ′ ∈ { − 1, 1}
by 〈1〉3, 〈1〉4

〈1〉6 qed by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉5

4


