Extends Integers, TLAPS
Without loss of generality, see our figures, the point of view vector z is $\langle 0,0,1\rangle$, as the gear wheel lies in the plane (O, X, Y); where O is the center of the gear wheel.
Still without loss of generality, such wheel has constant radius 1 .
VARIABLES $x, y 3 D$ vectors of the physical space.
Without loss of generality, we only pick x, y in the following Circle; see above assumptions.
$a b s[t \in \mathrm{In} t] \triangleq \mathrm{IF} t>0$ THEN t ELSE $-t$
Circle is a subset of Int \times Int $\times\{0\}$; which is infinite... This works (slowly!) IF you add additional constraints in $\operatorname{Inv} X$, Inv Y (See the "Unecessay if .. " comment). IF NOT, then it fails: $T L A P S$ will not solve any polynomial equation for you.

Note that $T L C$ will not like it either and will raise the usual "non-enumerable set" exception.
Circle $\triangleq\{$
$w \in$ Int \times Int $\times\{0\}:$
Manhattan norm:
$\wedge a b s[w[1]]+a b s[w[2]]=1$
Euclidian norm:
$\wedge a b s[w[1]] * a b s[w[1]]+a b s[w[2]] * a b s[w[2]]=1$
\}
Better use this Circle if you want $T L C$ be nice to your spec. You can drop the additional constaints in $\operatorname{InvX}, \operatorname{Inv} Y$ (see above), since Circle TLC is now a subset of a FINITE set.
CircleTLC $\triangleq\{$
$w \in\{-1,0,1\} \times\{-1,0,1\} \times\{0\}: \operatorname{abs}[w[1]]+a b s[w[2]]=1$
\}
Simpler is better: Straighforward definition of Circle:
CircleEnum $\triangleq\{$
$\langle 1,0,0\rangle,\langle-1,0,0\rangle$,
$\langle 0,1,0\rangle,\langle 0,-1,0\rangle$
\}
You may drop "BY DEF ... abs" whether you use it.

InnerProd is the usual inner product $x \cdot y$. Hence
InnerProd $\triangleq x[1] * y[1]+x[2] * y[2]$
Our assumption $z=\langle 0,0,1\rangle$ implies that the matrix $\left[\begin{array}{lll}x & y & z\end{array}\right]$ has determinant

$$
\text { Det }:=x[1] * y[2]-x[2] * y[1] .
$$

Hence the following operator Det
Det $\triangleq \mathrm{IF}(x \in$ Circle $\wedge y \in$ Circle $)$ THEN $x[1] * y[2]-x[2] * y[1]$ ELSE 0
$\operatorname{Inv} X: x$ is picked in Circle $*$; now x is fixed and MUST NOT change.
$\operatorname{Inv} X \triangleq$
$\wedge x \in$ Circle
Unnecessary if Circle is explicitely defined as a finite set:
$\wedge x[1] \in\{-1,1\}$
$\wedge x[2]=0$

```
Inv \(Y\) y is picked in Circle as well.
\(\operatorname{Inv} Y \triangleq\)
    \(\wedge y \in\) Circle
    \(\wedge y[1]=0\)
    Unnecessary if Circle is explicitely defined as a finite set:
    \(\wedge y[2] \in\{-1,1\}\)
Inv \(X Y\) : \(x\) and \(y\) MUST BE nontrivially orthogonal.
\(\operatorname{Inv} X Y \triangleq\)
    \(\wedge x \in\) Circle
    \(\wedge y \in\) Circle
    \(\wedge\) InnerProd \(=0\)
    Our invariant \(\square I n v\) is now "controlled" by the follwing Inv.
\(I n v \triangleq\)
    \(\wedge \operatorname{InvX}\)
    \(\wedge \operatorname{Inv} Y\)
    \(\wedge \operatorname{InvXY}\)
The Next action:
Next \(\triangleq\)
Boundaries
\(\wedge y \in\) Circle
\(\wedge x \in\) Circle
So, \(x\) no action will ever change \(x\) :
\(\wedge\) UNCHANGED \(x\)
\(\wedge y^{\prime} \in\) Circle You want to request that.
\(y\) is flipped in the sense that \(y^{\prime}:=-y\) :
\(\wedge y^{\prime}=\left[\begin{array}{ll}y & \operatorname{EXCEPT}![1]\end{array}=-y[1],![2]=-y[2]\right]\)
```

Our spec Spec, then. Remark that $I n v$ is also the initial condition.
Spec $\triangleq \operatorname{Inv} \wedge \square[N e x t]_{\langle x, y\rangle}$
Typing variables: Relevant type is Circle.
Typing $(v) \triangleq v \in$ Circle
The following lemma states that Next preserves Inv.
LEMMA LemInv $\triangleq I n v \wedge N e x t \Rightarrow I n v{ }^{\prime}$
$\langle 1\rangle$ SUFFICES ASSUME $I n v \wedge N e x t$
PROVE Inv ${ }^{\prime}$
obvious
$\langle 1\rangle 1$ Inv \wedge Next $\Rightarrow \operatorname{Inv} X^{\prime}$

By DEF $\operatorname{Inv} X, \operatorname{InvXY}$, Inv, Next
$\langle 1\rangle 2 \operatorname{Inv} \wedge N e x t \Rightarrow \operatorname{Inv} Y^{\prime}$
By def Inv Y, InvXY, Inv, Next, Circle
$\langle 1\rangle 3$ Inv \wedge Next $\Rightarrow \operatorname{Inv} X Y^{\prime}$
By def InvXY, Inv, Next, Circle, InnerProd
$\langle 1\rangle 4$ QED BY $\langle 1\rangle 1,\langle 1\rangle 2,\langle 1\rangle 3$ DEF Inv
Equivalently, the invariant $\square I n v$ is true under specs Spec.
THEOREM ThInv $\triangleq S p e c \Rightarrow \square I n v$
$\langle 1\rangle 1 I n v \wedge$ UNCHANGED $\langle x, y\rangle \Rightarrow I n v v^{\prime}$
BY DEF Circle, InnerProd, InvX, InvY, InvXY, Inv
$\langle 1\rangle 2$ Inv $\wedge \square[N e x t]_{\langle x, y\rangle} \Rightarrow \square I n v$
BY PTL, LemInv, $\langle 1\rangle 1$
$\langle 1\rangle$ QED BY $P T L,\langle 1\rangle 1,\langle 1\rangle 2$ DEF Spec

ThInv straightforwardly establishes that, under specification Spec, x, y, have always type Circle.

ThType: Stephan's version.
THEOREM ThTypeCompactVersion $\triangleq \operatorname{Spec} \Rightarrow \square$ Typing $(x) \wedge \square$ Typing (y)
$\langle 1\rangle . \operatorname{Inv} \Rightarrow$ Typing $(x) \wedge$ Typing (y)
BY DEF Inv, InvX, InvY, Typing
$\langle 1\rangle$. QED
BY ThInv, PTL
ThType: Stephan's version, with a SUFFICES ASSUME - PROVE
THEOREM ThType \triangleq Spec $\Rightarrow \square$ Typing $(x) \wedge \square$ Typing (y)
$\langle 1\rangle$ suffices assume Spec
PROVE
\wedge Spec $\Rightarrow \square I n v$
$\wedge \operatorname{Inv} \Rightarrow \operatorname{Typing}(x) \wedge \operatorname{Typing}(y)$
BY PTL DEF Inv, InvX, InvY, Typing
$\langle 1\rangle \operatorname{Inv} \Rightarrow$ Typing $(x) \wedge$ Typing (y)
BY DEF Inv, InvX, InvY, Typing
$\langle 1\rangle$ QED BY ThInv, PTL

The following theorem asserts that there are only three options for the step $\operatorname{det}(x, y, z) \rightarrow$ $\operatorname{det}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$:

1. $\operatorname{det}(x, y, z)=\operatorname{det}\left(x^{\prime}, y^{\prime}, z\right) \wedge$ UNCHANGED $\langle x, y\rangle$
2. $\operatorname{det}(x, y, z)=1 \wedge \operatorname{det}\left(x^{\prime}, y^{\prime}, z\right)=-1 \wedge \operatorname{Next}$
3. $\operatorname{det}(x, y, z)=-1 \wedge \operatorname{det}\left(x^{\prime}, y^{\prime}, z\right)=1 \wedge$ Next;
which establishes that our spec is correct. QED
THEOREM ThOscillatingDet $\triangleq \operatorname{Inv} \wedge N e x t \Rightarrow$
$\wedge \operatorname{Det} \in\{-1,1\}$

$$
\begin{aligned}
& \wedge \operatorname{Det}^{\prime} \in\{-1,1\} \\
& \wedge D^{\prime} t^{\prime}=-\operatorname{Det}
\end{aligned}
$$

$\langle 1\rangle$ SUFFICES ASSUME $I n v \wedge$ Next
PROVE
$\wedge \operatorname{Det} \in\{-1,1\}$
$\wedge \operatorname{Det} t^{\prime} \in\{-1,1\}$
$\wedge D^{\prime} t^{\prime}=-D e t$
OBVIOUS
$\langle 1\rangle 1 \operatorname{Inv} \wedge$ Next $\Rightarrow \operatorname{Det} \in\{-1,1\}$
BY Def InvX, InvY, Inv, Next, Det, Circle, abs
$\langle 1\rangle 2$ Inv \wedge Next \Rightarrow Det $^{\prime}=-$ Det
BY Def InvX, InvY, Inv, Next, Det, Circle
$\langle 1\rangle 3$ Inv \wedge Next \Rightarrow
$\wedge \operatorname{Det} \in\{-1,1\}$
\wedge Det $^{\prime}=-$ Det
BY $\langle 1\rangle 1,\langle 1\rangle 2$
$\langle 1\rangle 4 \operatorname{Det} \in\{-1,1\} \wedge \operatorname{Det}^{\prime}=-\operatorname{Det} \Rightarrow \operatorname{Det}^{\prime} \in\{-1,1\}$ obVious
$\langle 1\rangle 5$ Inv \wedge Next $\Rightarrow \operatorname{Det}^{\prime} \in\{-1,1\}$
BY $\langle 1\rangle 3,\langle 1\rangle 4$
$\langle 1\rangle 6$ QED BY $\langle 1\rangle 1,\langle 1\rangle 2,\langle 1\rangle 3,\langle 1\rangle 5$

