MODULE gear |

EXTENDS Integers, TLAPS
Without loss of generality, see our figures, the point of view vector z is (0, 0, 1), as the gear
wheel lies in the plane (O, X, Y); where O is the center of the gear wheel.

Still without loss of generality, such wheel has constant radius 1.

VARIABLES ¥, Yy 3D vectors of the physical space.

Without loss of generality, we only pick z, y in the following Circle; see above assumptions.

abs[t € Int] = 1F t > 0 THEN { ELSE — ¢

Circle is a subset of Int x Int x {0}; which is infinite... This works (slowly!)IF you add
additional constraints in InvX, InvY (See the “Unecessay if ..” comment). IF NOT, then it

fails: TLAPS will not solve any polynomial equation for you.
Note that TLC will not like it either and will raise the usual “non-enumerable set” exception.
Circle = {
w € Int x Int x {0} :
Manhattan norm:
A abs[w[1]] + abs[w([2]] = 1
Euclidian norm:

A abs[w[1]] * abs[w[1]] + abs[w[2]] * abs[w[2]] =1

Better use this Circle if you want TLC be nice to your spec. You can drop the additional
constaints in InvX, InvY (see above), since CircleTLC' is now a subset of a FINITE set.
CircleTLC = {
we{—-1,0,1} x{—1,0, 1} x {0} : abs[w[1]] + abs[w[2]] =1

Simpler is better: Straighforward definition of Circle:
CircleEnum = {
(1,0,0), (—1,0,0),
(0,1, 0), (0, —1, 0)
}

You may drop “BY DEF ... abs” whether you use it.

InnerProd is the usual inner product z - y. Hence

InnerProd = z[1] * y[1] + z[2] * y[2]

Our assumption z = (0, 0, 1) implies that the matrix [z y z] has determinant
Det := z[1] * y[2] — z[2] * y[1].
Hence the following operator Det

Det = 1F (z € Clircle Ay € Circle) THEN z[1] * y[2] — z[2] * y[1] ELSE 0
InvX: z is picked in Clircle * ; now z is fixed and MUST NOT change.

InvX

T
A



ANz € Circle

Unnecessary if Circle is explicitely defined as a finite set:
Az[l] € {—1,1}

ANz[2] =0

InvY vy is picked in Circle as well.
Iy 2
ANy € Circle
Ay[l]=0
Unnecessary if Clircle is explicitely defined as a finite set:

ANyl2] € {—1, 1}

InvXY: z and y MUST BE nontrivially orthogonal.
InvXY =
Az € Circle
ANy € Circle
A InnerProd = 0

Our invariant O/nv is now “controlled” by the follwing Inv.
Inv =
A InvX
A InvY
A InvXY

The Next action:

Next =
Boundaries
Ay € Circle
ANz € Clircle
So, z no action will ever change z:
A UNCHANGED z
A y" € Circle You want to request that.
y is flipped in the sense that y’ := — y :
Ay =y Exceer U[1] = — y[1], 1[2] = — y[2]

Our spec Spec, then. Remark that Inv is also the initial condition.

Spec = Inv A O[Next] ()

Typing variables: Relevant type is Circle.
. A .
Typing(v) = v € Circle

The following lemma states that Next preserves Inv.
LEMMA LemInv = Inv A Next = Inv'
(1) SUFFICES ASSUME Inv A Next
PROVE Inv’
OBVIOUS
(1)1 Inv A Next = InvX’



BY DEF InvX, InvXY, Inv, Next
(1)2 Inv A Next = InvY’

BY DEF InvY, InvXY, Inv, Next, Circle
(1)3 Inv A Next = InvXY’

BY DEF [nvXY, Inv, Next, Circle, InnerProd
(1)4 QED BY (1)1, (1)2, (1)3 DEF Inv

Equivalently, the invariant O/nv is true under specs Spec.
THEOREM Thlnv = Spec = Olnv
(1)1 Inv A UNCHANGED (z, y) = Inv’
BY DEF Circle, InnerProd, InvX, InvY, InvXY, Inv
(1)2 Inv A O[Neat](,, ,y = Olnv
BY PTL, LemInv, (1)1
(1) QED BY PTL, (1)1, (1)2 DEF Spec

Thlnv straightforwardly establishes that, under specification Spec, z, y, have always type
Circle.

ThType: Stephan’s version.
N

THEOREM ThTypeCompactVersion = Spec = OTyping(z) A O Typing(y)
(1).Inv = Typing(z) N\ Typing(y)

BY DEF Inv, InvX, InvY, Typing
(1).QED

BY Thinv, PTL

ThType: Stephan’s version, with a SUFFICES ASSUME — PROVE .
THEOREM ThType = Spec = OTyping(z) A O Typing(y)
(1) SUFFICES ASSUME Spec

PROVE

A Spec = Olnv
A Inv = Typing(z) A Typing(y)

BY PTL DEF Inv, InvX, InvY, Typing
(1) Inv = Typing(z) N Typing(y)

BY DEF Inv, InvX, InvY, Typing
(1) QED BY Thlnv, PTL

The following theorem asserts that there are only three options for the step det(z, y, z) —
det(z’, y', 2'):

1. det(z, y, z) = det(z’, y’, z) A UNCHANGED (z, y)
2. det(z, y, z) = 1 Adet(z', v/, z) = — 1 A Next
3. det(z, y, z) = — 1 Adet(z’, y’, z) = 1 A Next;

which establishes that our spec is correct. QED

THEOREM ThOscillatingDet = Inv A Next =
ADet €{—1,1}



ADet' € {—1,1}

A Det’ = — Det
(1) SUFFICES ASSUME Inv A Next
PROVE

ADet € {—1,1}
A Det' € { -1, 1}
A Det’ = — Det
OBVIOUS
(1)1 Inv A Next = Det € { —1, 1}
BY DEF InvX, InvY, Inv, Next, Det, Circle, abs
(1)2 Inv A Next = Det’ = — Det
BY DEF InvX, InvY, Inv, Next, Det, Circle
(1)3 Inv A Next =
ADet € {—1,1}
A Det' = — Det
BY (1)1, (1)2
(1)4 Det € { — 1,1} A Det' = — Det = Det’' € { —1, 1}
OBVIOUS
(1)5 Inv A Next = Det’ € { —1, 1}
BY (1)3, (1)4
(1)6 QED BY (1)1, (1)2, (1)3, (1)5




