
Specification of a hoisting system that is able
to alternatively raise and lower payloads with

no inversion of motive force.

G.Cordier

August 2, 2023



As an introduction, let us quote[1]:

The problem is based on a real machine, developed by the Re-
naissance artist/engineer Filippo Brunelleschi during the period
1420-1425. The machine was used to hoist large sandstone and
marble blocks for completion of the cupola of the cathedral in
Florence [Since] it bothered him […] that when the block reached
the top of the cupola, the oxen had to be un-harnessed and re-
harnessed to change the direction of the hoist and lower the
lifting tackle back to the ground. Brunelleschi’s solution was a
three-speed, reversible hoist. This was a novel concept and drew
much admiration from other Renaissance artists and engineers
[…].

So, Brunelleschi’s design may be described as follow: The very hoisting sys-
tem (the gear: A wheel around an horizontal shaft) gets motion from a main
(vertical) shaft. Such motion is captured from a wheel (A) that is rigidly
fixed to the main shaft. In other words, A is the driving wheel. Contact
between gear and wheel A (only) occurs at point P; see [Figure 1].

Moreover, a second wheel A′, which can be seen as a (distinct) copy of
A is symmetrically set. More specifically, the symmetry is performed with
respect to the “mirror”plan (O,X,Z); see [Figure 1].

The key ingredient is that a vertical shift can make the gear switch con-
tact P to its A′ counterpart P′. The gear is then equipped with (only) two
degrees of freedom (off rotation) : Either contact in P or in P′

It can now be shown that the gear can either lift or pull payloads, on de-
mand. To do so, it is enough to switch from one state/configuration to
the other one. In other words, raising and lowering payloads can now be
done (1) with a single device, (2) without reversing the driving force, i.e.
without reversing the vertical shaft rotation. To sum it up, changing the
rotation direction is no longer done at the “engine level” but, instead, by a
simple, effortless shift of the wheels.
The following specification “encodes” the system (the gear) and its environ-
ment (wheels A,A′) at a geometrical level of astraction; see [Figure 1.B].
Provided celerity vector x, radius vector y and normal vector z (all being
normalized, then nonzero), the rotation direction is identified with the de-
terminant det(x, y, z) ∈ {-1, 1} of the block matrix [x y z]. The spec shall
then be proved once established that such determinant “oscillates” between

1



-1 (given one contact, say P) and 1 (provided the other one, say P′).

The following specification is written in TLA+; see [2], [3]. TLA+ is based
on TLA, an extension of the first logic order (in ZFC). Noticeably,

(a ) ’ denotes a variable assignement at the next following step;

(b ) □ asserts that a formula is always valid, i.e. true for every reachable
step.

Such specification is actually pretty general:

(a ) It does not force us to explicitely choose a rotation direction for the
vertical shaft;

(b ) It does not force us to explicitely choose an initial driving wheel (A or
A′);

(c ) In theory, it is easy to drop gear and wheels, so that the system keeps
working as long as there exists at any time a single contact point P,P′.
For instance, we may replace wheels by arbitray convex shapes. An-
other approach is to see that the fundamental properties of the whole
system are stable under “conservative” diffeomorphism φ (more rigor-
ously: det φ′ > 0). This would mean a of useless trouble in practice
…but that is not a part of the specification!

2



Figure 1: Physical and geometrical descriptions of the system (the gear) and
its environment (the vertical shaft)

3



MODULE gear
EXTENDS Reals, TLAPS
Without loss of generality, see our figures, the point of view vector Z

is ⟨0, 0, 1⟩, as the gear wheel lies in the plane (O, X, Y); where O is the center of the gear
wheel. Still without loss of generality, such wheel has constant radius 1.
CONSTANT Z Z MUST BE the constant vector ⟨0, 0, 1⟩
VARIABLES x, y 3D vectors of the physical space.

Without loss of generality, we only pick x, y in the following Vect;
see above assumptions.
Vect Δ

= {
⟨1, 0, 0⟩, ⟨ − 1, 0, 0⟩,
⟨0, 1, 0⟩, ⟨0, − 1, 0⟩

}

InnerProd is the inner product x · y. Hence
InnerProd Δ

=
x[1] ∗ y[1] +
x[2] ∗ y[2] +
x[3] ∗ y[3]

Our assumption Z = ⟨0, 0, 1⟩ implies that the matrix [x y z] has determi-
− nant Det := x[1] ∗ y[2]− x[2] ∗ y[1]. Hence the following operator Det

Det Δ
= x[1] ∗ y[2]− x[2] ∗ y[1]

InvX: x is a picked in Vect ∗ : now x is fixed here and MUST NOT change.
InvX Δ

=
∧ x ∈ Vect
∧ x[1] ∈ { − 1, 1}
∧ x[2] = 0
∧ x[3] = 0

InvY y is a picked in Vect as well.
InvY Δ

=
∧ y ∈ Vect
∧ y[1] = 0
∧ y[2] ∈ { − 1, 1}
∧ y[3] = 0

InvXY: x and y MUST BE nontrivially orthogonal
InvXY Δ

=
∧ x ̸= ⟨0, 0, 0⟩ Redundant whether InvX is enabled.

4



∧ y ̸= ⟨0, 0, 0⟩ Redundant whether InvY is enabled.
∧ InnerProd = 0

Let us repeat that Z = ⟨0, 0, 1⟩
InvZ Δ

= Z = ⟨0, 0, 1⟩

Our invariant 2Inv is now “controlled” by the follwing Inv
Inv Δ

=
∧ InvX
∧ InvY
∧ InvXY
∧ InvZ

The Next action
Next Δ

=
So, x no action will ever change x:
∧ UNCHANGED x
y is flipped in the sense that y′ := − y :
∧ y′ = [y EXCEPT ! [1] = − y[1], ! [2] = − y[2]]

Our spec Spec, then. Remark that Inv is also the initial condition
Spec Δ

= Inv ∧2[Next]⟨x, y⟩
Typing variables: Relevant type is Vect.

Typing(v) Δ
= v ∈ Vect

The following lemma states that Next preserves Inv.
LEMMA LemInv Δ

= Inv ∧ Next =⇒ Inv′

⟨1⟩ SUFFICES ASSUME Inv ∧ Next
PROVE Inv′

OBVIOUS
⟨1⟩ USE DEF Vect, InnerProd, InvX, InvY, InvXY, InvZ, Inv, Next
⟨1⟩1 Inv ∧ Next =⇒ Inv′OBVIOUS
⟨1⟩4 QED BY ⟨1⟩1

Equivalently, the invariant 2Inv is true under specs Spec.
THEOREM ThInv Δ

= Spec =⇒ 2Inv
⟨1⟩ USE DEF Vect, InnerProd, InvX, InvY, InvXY, InvZ, Inv
⟨1⟩1 Inv ∧ UNCHANGED ⟨x, y⟩ =⇒ Inv′BY DEF Inv
⟨1⟩2 Inv ∧2[Next]⟨x, y⟩ =⇒ 2InvBY PTL, LemInv, ⟨1⟩1
⟨1⟩ QED BY ⟨1⟩1, ⟨1⟩2 DEF Spec

5



ThInv straightforwardly establishes that, under specification Spec, x, y,
have always type Vect.
THEOREM ThType Δ

= Spec =⇒ 2Typing(x) ∧2Typing(y)
⟨1⟩ SUFFICES ASSUME Spec
PROVE 2Typing(x) ∧2Typing(y)
OBVIOUS
⟨1⟩ USE DEF

Vect, InnerProd, Det, InvX, InvY, InvXY, InvZ, Inv, Next, Spec, Typing
⟨1⟩1 Spec =⇒ 2InvBY ThInv
⟨1⟩2 Inv =⇒ Typing(x) ∧ Typing(y) OBVIOUS
⟨1⟩3 QED BY PTL, ⟨1⟩1, ⟨1⟩2 DEF Inv, Typing

The following theorem asserts that there are only three options for
the step det(x, y, z) → det(x′, y′, z′):
1. det(x, y, Z) = det(x′, y′, Z) ∧ UNCHANGED ⟨x, y⟩
2. det(x, y, Z) = 1 ∧ det(x′, y′, Z) = − 1 ∧ Next
3. det(x, y, Z) = − 1 ∧ det(x′, y′, Z) = 1 ∧ Next

which establishes that our spec is correct. QED
THEOREM ThOscillatingDet Δ

= Inv ∧ Next =⇒
∧ Det ∈ { − 1, 1}
∧ Det′ ∈ { − 1, 1}
∧ Det′ = − Det

⟨1⟩ SUFFICES ASSUME Inv ∧ Next
PROVE

∧ Det ∈ { − 1, 1}
∧ Det′ ∈ { − 1, 1}
∧ Det′ = − Det

OBVIOUS
⟨1⟩ USE DEF

Vect, InnerProd, Det, InvX, InvY, InvXY, InvZ, Inv, Next, Spec
⟨1⟩1 Inv ∧ Next =⇒ Det ∈ { − 1, 1}OBVIOUS
⟨1⟩2 Inv ∧ Next =⇒ Det′ ∈ { − 1, 1}OBVIOUS
⟨1⟩3 Inv ∧ Next =⇒ Det′ = − Det OBVIOUS
⟨1⟩4 QED BY ⟨1⟩1, ⟨1⟩2, ⟨1⟩3

6



References
[1] Biomimetics & Dexterous Manipulation Laboratory. BrunelleschiNotes.

http://bdml.stanford.edu/Main/BrunelleschiNotes. Accessed:
August 2, 2023.

[2] Leslie Lamport. TLA+. http://lamport.azurewebsites.net/tla/
tla.html. Accessed: August 2, 2023.

[3] Markus Kuppe et al. TLA+ repository. https://github.com/tlaplus.
Accessed: August 2, 2023.

7

http://bdml.stanford.edu/Main/BrunelleschiNotes
http://lamport.azurewebsites.net/tla/tla.html
http://lamport.azurewebsites.net/tla/tla.html
https://github.com/tlaplus

	Bibliography

