[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: "Partial" Functions

Ordinary mathematics has no formal notion of a "partial function".

I have no exact definition of what the syntagm "ordinary mathematics" means but Bourbaki in his treatise 
gave a definition of a function as a triple (F,A,B) where F is a part of ( A X B ) with extra conditons, 
A the domain of the function and B the range. The reason for representing a function as a triple -- and not as
a part of cross product more simply -- is to include the case of partial function.

Here is an excerpt of wikipedia where Bourbaki's formalization of a function is given in full.

``In 1954, Bourbaki, on p. 76 in Chapitre II of Theorie des Ensembles (theory of sets), gave a definition of a function as a triplef = (FAB).[99] Here F is a functional graph, meaning a set of pairs where no two pairs have the same first member. On p. 77 (op. cit.) Bourbaki states (literal translation): "Often we shall use, in the remainder of this Treatise, the word functioninstead of functional graph."''